DATETIME=$(date '+%Y-%m-%d-%H') RUN_NAME="timesearch-SFT-43-video-r1-data" OUTPUT_DIR=/data/shuimu.chen/TimeSearch-R/experiment/$RUN_NAME/$DATETIME mkdir -p $OUTPUT_DIR export WANDB_PROJECT=TimeSearch-R-SFT export WANDB_NAME=$RUN_NAME export LOG_PATH=${OUTPUT_DIR}/log.txt export DEBUG=true export CUDA_VISIBLE_DEVICES=2,3,4,5,6,7 export NCCL_TIMEOUT=7200 export PYTHONPATH=".:$PYTHONPATH" export SIGLIP_URL=grpc://127.0.0.1:51000 export WANDB_API_KEY="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" # export LLM_AS_A_JUDGE_BASE=http://127.0.0.1:18901/v1 # Local training configuration NUM_GPUS=6 MASTER_PORT=29500 echo "Local training mode: ${NUM_GPUS} GPUs on localhost:${MASTER_PORT}" TRAIN_PATH=configs/dataset_sft.yaml VIDEO_ROOT=/xuhongbo/shuimu.chen/LongVideoBench/videos_480p_noaudio MODEL_BASE=/data/shuimu.chen/Qwen2.5-VL-7B-Instruct torchrun --nproc_per_node=${NUM_GPUS} --nnodes=1 --node_rank=0 \ --master_addr=localhost --master_port=${MASTER_PORT} \ time_r1/sft.py \ --deepspeed ./scripts/zero3.json \ --output_dir $OUTPUT_DIR \ --model_name_or_path $MODEL_BASE \ --train_data_path $TRAIN_PATH \ --video_folder $VIDEO_ROOT \ --prompt_template v3 \ --tool_name_list seek_video_frames \ --total_video_tokens 10240 \ --max_frames 60 \ --min_per_frame_tokens 4 \ --max_per_frame_tokens 192 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 2 \ --dataloader_num_workers 0 \ --logging_steps 1 \ --bf16 \ --torch_dtype bfloat16 \ --data_seed 42 \ --gradient_checkpointing true \ --attn_implementation flash_attention_2 \ --learning_rate 1e-6 \ --num_train_epochs 1 \ --run_name $RUN_NAME \ --report_to wandb \ --save_steps 200 \ --save_only_model true