SelfCheckGPT_pytorch / main_kaggle.py
aledraa's picture
Create main_kaggle.py
b53c3eb verified
import torch
import nltk
import numpy as np
import os
import kagglehub
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
from bert_score import score as bert_score_calculator
try:
nltk.data.find('tokenizers/punkt')
except nltk.downloader.DownloadError:
nltk.download('punkt')
class LLM_Generator:
def __init__(self, model_handle, device='cuda'):
self.device = device
print(f"Downloading model from Kaggle Hub: {model_handle}")
model_path = kagglehub.model_download(model_handle)
print(f"Model downloaded to: {model_path}")
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map="auto"
)
def generate(self, prompt, num_samples=1, temperature=0.7, max_new_tokens=150):
messages = [
{"role": "system", "content": "you are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = self.tokenizer([text] * num_samples, return_tensors="pt").to(self.device)
generated_ids_batch = self.model.generate(
**model_inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
num_return_sequences=num_samples
)
input_ids_len = model_inputs.input_ids.shape[1]
final_responses = []
for generated_ids in generated_ids_batch:
output_ids = generated_ids[input_ids_len:].tolist()
try:
# Find the start of the final content after the "thinking" part
# The token ID 151668 corresponds to the end of the thinking block for Qwen-3
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
final_responses.append(content)
return final_responses
class SelfCheckGPT:
def __init__(self, device=None):
if device:
self.device = device
else:
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.nli_tokenizer = None
self.nli_model = None
def _load_nli_model(self):
if self.nli_model is None:
nli_model_name = "microsoft/deberta-v3-large-mnli"
try:
self.nli_tokenizer = AutoTokenizer.from_pretrained(nli_model_name)
self.nli_model = AutoModelForSequenceClassification.from_pretrained(nli_model_name).to(self.device)
except Exception as e:
print(f"Error loading NLI model: {e}")
raise
def _check_bertscore(self, sentences, sample_responses):
all_scores = []
for sent in sentences:
refs = [sent] * len(sample_responses)
cands = sample_responses
_, _, F1 = bert_score_calculator(
cands, refs, lang="en", verbose=False, idf=False, device=self.device
)
avg_bert_score = F1.mean().item()
score = 1.0 - avg_bert_score
all_scores.append(score)
return all_scores
def _check_nli(self, sentences, sample_responses):
self._load_nli_model()
all_scores = []
for sent in sentences:
contradiction_probs = []
for sample in sample_responses:
tokenized_input = self.nli_tokenizer(
sample, sent, return_tensors="pt", truncation=True, max_length=512
).to(self.device)
with torch.no_grad():
logits = self.nli_model(**tokenized_input).logits
entailment_logit = logits[0, self.nli_model.config.label2id['entailment']]
contradiction_logit = logits[0, self.nli_model.config.label2id['contradiction']]
prob_contradiction = torch.exp(contradiction_logit) / (torch.exp(entailment_logit) + torch.exp(contradiction_logit))
contradiction_probs.append(prob_contradiction.item())
avg_contradiction_prob = np.mean(contradiction_probs)
all_scores.append(avg_contradiction_prob)
return all_scores
def check(self, main_response, sample_responses, method='nli'):
sentences = nltk.sent_tokenize(main_response)
if not sentences:
return []
if method.lower() == 'bertscore':
scores = self._check_bertscore(sentences, sample_responses)
elif method.lower() == 'nli':
scores = self._check_nli(sentences, sample_responses)
else:
raise ValueError(f"Invalid method '{method}'. Choose from 'bertscore', 'nli'.")
results = [{"sentence": sent, "score": score} for sent, score in zip(sentences, scores)]
return results
def main():
model_handle = "qwen-lm/qwen-3/transformers/0.6b"
print("Initializing LLM Generator...")
generator = LLM_Generator(model_handle=model_handle)
prompt = "Write a short biography of Neil Armstrong, the first man on the moon. Include the name of the spacecraft he used."
print(f"Generating responses for prompt: '{prompt}'")
responses = generator.generate(prompt, num_samples=6, temperature=0.8, max_new_tokens=150)
main_response = responses[0]
sample_responses = responses[1:]
print("\n--- Generated Main Response ---")
print(main_response)
print("\n--- Generated Sample Responses ---")
for i, r in enumerate(sample_responses):
print(f"{i+1}. {r[:100]}...")
checker = SelfCheckGPT()
print("\n\n--- Running SelfCheckGPT with 'nli' method ---")
nli_results = checker.check(main_response, sample_responses, method='nli')
print("Higher scores suggest a higher probability of being a hallucination.")
for result in nli_results:
print(f"Score: {result['score']:.4f}\tSentence: {result['sentence']}")
print("\n--- Running SelfCheckGPT with 'bertscore' method ---")
bertscore_results = checker.check(main_response, sample_responses, method='bertscore')
print("Higher scores suggest a higher probability of being a hallucination.")
for result in bertscore_results:
print(f"Score: {result['score']:.4f}\tSentence: {result['sentence']}")