File size: 6,791 Bytes
b53c3eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import nltk
import numpy as np
import os
import kagglehub
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
from bert_score import score as bert_score_calculator

try:
    nltk.data.find('tokenizers/punkt')
except nltk.downloader.DownloadError:
    nltk.download('punkt')

class LLM_Generator:
    def __init__(self, model_handle, device='cuda'):
        self.device = device
        print(f"Downloading model from Kaggle Hub: {model_handle}")
        model_path = kagglehub.model_download(model_handle)
        print(f"Model downloaded to: {model_path}")
        
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype="auto",
            device_map="auto"
        )

    def generate(self, prompt, num_samples=1, temperature=0.7, max_new_tokens=150):
        messages = [
            {"role": "system", "content": "you are a helpful assistant."},
            {"role": "user", "content": prompt}
        ]
        text = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
            enable_thinking=True 
        )
        model_inputs = self.tokenizer([text] * num_samples, return_tensors="pt").to(self.device)

        generated_ids_batch = self.model.generate(
            **model_inputs,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            num_return_sequences=num_samples
        )
        
        input_ids_len = model_inputs.input_ids.shape[1]
        final_responses = []

        for generated_ids in generated_ids_batch:
            output_ids = generated_ids[input_ids_len:].tolist()
            
            try:
                # Find the start of the final content after the "thinking" part
                # The token ID 151668 corresponds to the end of the thinking block for Qwen-3
                index = len(output_ids) - output_ids[::-1].index(151668)
            except ValueError:
                index = 0
            
            content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
            final_responses.append(content)
            
        return final_responses

class SelfCheckGPT:
    def __init__(self, device=None):
        if device:
            self.device = device
        else:
            self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        
        self.nli_tokenizer = None
        self.nli_model = None

    def _load_nli_model(self):
        if self.nli_model is None:
            nli_model_name = "microsoft/deberta-v3-large-mnli"
            try:
                self.nli_tokenizer = AutoTokenizer.from_pretrained(nli_model_name)
                self.nli_model = AutoModelForSequenceClassification.from_pretrained(nli_model_name).to(self.device)
            except Exception as e:
                print(f"Error loading NLI model: {e}")
                raise

    def _check_bertscore(self, sentences, sample_responses):
        all_scores = []
        for sent in sentences:
            refs = [sent] * len(sample_responses)
            cands = sample_responses
            
            _, _, F1 = bert_score_calculator(
                cands, refs, lang="en", verbose=False, idf=False, device=self.device
            )
            
            avg_bert_score = F1.mean().item()
            score = 1.0 - avg_bert_score
            all_scores.append(score)
        return all_scores

    def _check_nli(self, sentences, sample_responses):
        self._load_nli_model()
        all_scores = []

        for sent in sentences:
            contradiction_probs = []
            for sample in sample_responses:
                tokenized_input = self.nli_tokenizer(
                    sample, sent, return_tensors="pt", truncation=True, max_length=512
                ).to(self.device)

                with torch.no_grad():
                    logits = self.nli_model(**tokenized_input).logits
                
                entailment_logit = logits[0, self.nli_model.config.label2id['entailment']]
                contradiction_logit = logits[0, self.nli_model.config.label2id['contradiction']]
                
                prob_contradiction = torch.exp(contradiction_logit) / (torch.exp(entailment_logit) + torch.exp(contradiction_logit))
                contradiction_probs.append(prob_contradiction.item())

            avg_contradiction_prob = np.mean(contradiction_probs)
            all_scores.append(avg_contradiction_prob)
            
        return all_scores

    def check(self, main_response, sample_responses, method='nli'):
        sentences = nltk.sent_tokenize(main_response)
        if not sentences:
            return []
        
        if method.lower() == 'bertscore':
            scores = self._check_bertscore(sentences, sample_responses)
        elif method.lower() == 'nli':
            scores = self._check_nli(sentences, sample_responses)
        else:
            raise ValueError(f"Invalid method '{method}'. Choose from 'bertscore', 'nli'.")

        results = [{"sentence": sent, "score": score} for sent, score in zip(sentences, scores)]
        return results

def main():
    model_handle = "qwen-lm/qwen-3/transformers/0.6b"

    print("Initializing LLM Generator...")
    generator = LLM_Generator(model_handle=model_handle)
    
    prompt = "Write a short biography of Neil Armstrong, the first man on the moon. Include the name of the spacecraft he used."
    print(f"Generating responses for prompt: '{prompt}'")
    
    responses = generator.generate(prompt, num_samples=6, temperature=0.8, max_new_tokens=150)
    main_response = responses[0]
    sample_responses = responses[1:]

    print("\n--- Generated Main Response ---")
    print(main_response)
    print("\n--- Generated Sample Responses ---")
    for i, r in enumerate(sample_responses):
        print(f"{i+1}. {r[:100]}...")

    checker = SelfCheckGPT()
    
    print("\n\n--- Running SelfCheckGPT with 'nli' method ---")
    nli_results = checker.check(main_response, sample_responses, method='nli')
    print("Higher scores suggest a higher probability of being a hallucination.")
    for result in nli_results:
        print(f"Score: {result['score']:.4f}\tSentence: {result['sentence']}")

    print("\n--- Running SelfCheckGPT with 'bertscore' method ---")
    bertscore_results = checker.check(main_response, sample_responses, method='bertscore')
    print("Higher scores suggest a higher probability of being a hallucination.")
    for result in bertscore_results:
        print(f"Score: {result['score']:.4f}\tSentence: {result['sentence']}")