YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
CheXficient
CheXficient is a vision-language foundation model for chest X-ray (CXR) interpretation, developed to enhance both data- and computation-efficiency. It enables joint image-text representation learning and supports prompt-based zero-shot classification.
This repository provides a Hugging Face-compatible implementation for seamless integration into research workflows.
Model Overview
- Architecture: Vision-Language dual encoder
- Input: Chest X-ray image + text prompts
- Output: Image-text similarity logits and embeddings
- Framework: PyTorch + Hugging Face Transformers
- Intended Use: Research in medical AI and multimodal learning
Installation
pip install torch torchvision transformers pillow
Load the Model
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
repo_id = "StanfordAIMI/CheXficient"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModel.from_pretrained(
repo_id,
trust_remote_code=True
).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(repo_id, trust_remote_code=True)
model.eval()
Zero-Shot Classification Example
image = Image.open("./CXR/images/5AF3BB6C1BCC83C.png").convert("RGB")
text = ["Pneumonia", "no Pneumonia"]
image_inputs = image_processor(images=image, return_tensors="pt").to(device)
text_inputs = tokenizer(text, padding=True, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(
pixel_values=image_inputs["pixel_values"],
text_tokens=text_inputs,
)
print(outputs)
Optional probability conversion:
import torch.nn.functional as F
logits = outputs["logits_per_image"]
probs = F.softmax(logits, dim=-1)
print(probs)
Intended Use
- Zero-shot CXR findings classification
- Prompt-based disease detection
Citation
@article{chexficient2024,
title={CheXficient: Efficient Vision-Language Learning for Chest X-ray Understanding},
author={...},
journal={...},
year={2024}
}
- Downloads last month
- 70
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support