NoFrequentWords

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.5140
  • eval_Accuracy: 0.4027
  • eval_F1_macro: 0.1427
  • eval_F1_class_0: 0.9205
  • eval_F1_class_1: 0.6667
  • eval_F1_class_2: 0.1782
  • eval_F1_class_3: 0.0
  • eval_F1_class_4: 0.0
  • eval_F1_class_5: 0.0
  • eval_F1_class_6: 0.0204
  • eval_F1_class_7: 0.0
  • eval_F1_class_8: 0.0
  • eval_F1_class_9: 0.9070
  • eval_F1_class_10: 0.0253
  • eval_F1_class_11: 0.0
  • eval_F1_class_12: 0.1140
  • eval_F1_class_13: 0.0
  • eval_F1_class_14: 0.0220
  • eval_F1_class_15: 0.0
  • eval_F1_class_16: 0.0
  • eval_F1_class_17: 0.0
  • eval_F1_class_18: 0.0
  • eval_F1_class_19: 0.0
  • eval_runtime: 17.6645
  • eval_samples_per_second: 63.97
  • eval_steps_per_second: 4.019
  • epoch: 2.92
  • step: 9500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Kamer/NoFrequentWords

Finetuned
(10778)
this model