YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

DeepSeek-Coder-7B-Instruct-v1.5

This model is a fine-tuned version of DeepSeek-Coder-7B-Instruct-v1.5 specifically optimized for generating high-quality PyTorch neural network architectures for image classification tasks.

Model Details

Base Model

  • Base Model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
  • Architecture: LLaMA-based (30 layers, 4096 hidden size, 32 attention heads)
  • Parameters: 7 billion
  • Context Length: 4096 tokens
  • Vocabulary Size: 102,400

LoRA Configuration

  • LoRA Rank (r): 32
  • LoRA Alpha: 32
  • LoRA Dropout: 0.05
  • Target Modules:
    • Attention: q_proj, k_proj, v_proj, o_proj
    • MLP: up_proj, down_proj, gate_proj
  • Layers: 0-23 (all 24 layers)
  • Task Type: Causal Language Modeling

Training Hyperparameters

  • Learning Rate: 1e-5
  • Batch Size: 1 per device
  • Gradient Accumulation: 4 steps
  • Optimizer: paged AdamW 8-bit
  • Scheduler: Cosine decay with 20 warmup steps
  • Weight Decay: 0.01
  • Max Gradient Norm: 1.0
  • Training Epochs: 5 per cycle
  • Precision: bfloat16

Performance Metrics

Generation Performance

  • Generation Success Rate: 59.13%
  • Valid Generation Rate: 59.13% (123 valid out of 208 generated)

Model Quality

  • Average Accuracy: 50.99% (95% CI: 50.06% - 51.92%)
  • Best Accuracy: 63.98%
  • Median Accuracy: 51.14%
  • Quality Distribution:
    • Models ≥ 40% accuracy: 96.81%
    • Models ≥ 35% accuracy: 100.00%
    • Models ≥ 30% accuracy: 100.00%

Intended Use

Primary Use Case

This model is designed to generate PyTorch neural network architectures for image classification tasks, specifically optimized for:

  • Dataset: CIFAR-10 (32×32 RGB images, 10 classes)
  • Task: Image classification
  • Framework: PyTorch
  • Optimization Target: First-epoch accuracy

Model Capabilities

  • Generates complete, compilable PyTorch nn.Module classes
  • Creates architectures with proper method signatures:
    • __init__(self, in_shape, out_shape, prm, device)
    • forward(self, x)
    • train_setup(self, prm)
    • learn(self, train_data)
  • Produces novel, structurally diverse architectures
  • Respects parameter constraints and resource limits
  • Generates architectures optimized for fast convergence

Out-of-Scope Use Cases

  • Not optimized for other datasets (MNIST, ImageNet, etc.)
  • Not designed for other tasks (object detection, segmentation, etc.)
  • Not optimized for multi-epoch training (focuses on first-epoch performance)

How to Use

Installation

pip install torch transformers peft accelerate

Basic Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "out/iterative_cycles_v2/cycle_18/merged_model",
    torch_dtype=torch.float16,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(
    "out/iterative_cycles_v2/cycle_18/merged_model"
)

# Prepare prompt
system_prompt = "You are an expert PyTorch architecture designer specializing in creating UNIQUE, high-performing neural networks optimized for first-epoch accuracy."

user_prompt = """Task: Design a PyTorch CV model for image classification.
Dataset: CIFAR-10 (32×32 RGB, channels-first C×H×W).
Resource limits: params ≤ 500000; latency budget: tight (edge-friendly).
Constraints: use standard layers only; no pretrained weights.
**REQUIRED FORMAT**:
- Class name: `Net(nn.Module)`
- Constructor: `def __init__(self, in_shape: tuple, out_shape: tuple, prm: dict, device: torch.device) -> None`
- Forward: `def forward(self, x: torch.Tensor) -> torch.Tensor`
- REQUIRED METHODS: `train_setup(self, prm)` and `learn(self, train_data)`
- REQUIRED FUNCTION: `def supported_hyperparameters(): return {'lr', 'momentum'}`
- REQUIRED IMPORTS: `import torch` and `import torch.nn as nn`
**PRIMARY OBJECTIVE**: Achieve MAXIMUM ACCURACY after FIRST EPOCH of training on CIFAR-10."""

# Format as chat
messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": user_prompt}
]

# Tokenize
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)

# Generate
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=2048,
        temperature=0.20,
        top_k=50,
        top_p=0.9,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

# Decode
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)

Generation Parameters (Recommended)

  • Temperature: 0.20 (focused, deterministic)
  • Top-k: 50
  • Top-p: 0.9
  • Max New Tokens: 2048
  • Do Sample: True

Training Data

Initial Training Data

  • Source: Curated from LEMUR database
  • Size: 1,698 examples (after deduplication)
  • Format: Chat format with system/user/assistant messages
  • Content: PyTorch neural network architectures with accuracy scores

Evaluation

Evaluation Protocol

  • Dataset: CIFAR-10
  • Training: 1 epoch only
  • Hyperparameters (fixed):
    • Learning rate: 0.01
    • Momentum: 0.9
    • Batch size: 10
    • Optimizer: SGD
    • Data augmentation: Normalization + random horizontal flip
  • Metric: First-epoch accuracy

Validation Process

  1. Compilation Check: Verify Python syntax and PyTorch compatibility
  2. Training: Train for 1 epoch on CIFAR-10
  3. Evaluation: Compute accuracy on test set
  4. Novelty Check: AST-based structural analysis to ensure uniqueness

Limitations

  1. Dataset Specificity: Optimized for CIFAR-10; may not generalize to other datasets
  2. Single Epoch Focus: Optimized for first-epoch performance, not long-term training
  3. Fixed Evaluation Protocol: Uses fixed hyperparameters; may not reflect best-case performance
  4. Computational Cost: Requires significant GPU memory (~20-30GB for inference)
  5. Generation Variability: Success rate is ~59%; some generations may fail validation

Citation

If you use this model, please cite:

@article{nn_novelty_generation_2025,
  title={Emergent Architectural Novelty in Deep Models via LLM–Driven Synthesis},
  author={Waleed Khalid, Dr. Dimytro Ignatove and Prof. Dr. Radu Timofte},
  journal={Proceedings of ACL 2025},
  year={2025}
}

Model Card Information

  • Model Type: Causal Language Model (Decoder-only)
  • Language: Python (PyTorch code generation)
  • License: Check base model license (DeepSeek-Coder-7B-Instruct-v1.5)
  • Fine-Tuning Date: 2025
  • Fine-Tuning Method: Iterative Supervised Fine-Tuning with LoRA
  • Base Model: deepseek-ai/deepseek-coder-7b-instruct-v1.5

Acknowledgments

Model Details

  • Developed by: [Waleed Khalid / ABrain]
  • Finetuned from model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
  • Model type: Causal Language Model (Transformer-based)
  • Language(s) (NLP): Primarily English (or multilingual, if applicable)
  • License: MIT

Model Sources

  • Repository: ABrain/NNGPT-UniqueArch-Rag

Note: This model was trained through an iterative fine-tuning process over 22 cycles. Cycle 18 (This) represents the best-performing checkpoint with optimal balance of accuracy, quality, and generation success rate.

Downloads last month
15
Safetensors
Model size
7B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support