YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
DeepSeek-Coder-7B-Instruct-v1.5
This model is a fine-tuned version of DeepSeek-Coder-7B-Instruct-v1.5 specifically optimized for generating high-quality PyTorch neural network architectures for image classification tasks.
Model Details
Base Model
- Base Model:
deepseek-ai/deepseek-coder-7b-instruct-v1.5 - Architecture: LLaMA-based (30 layers, 4096 hidden size, 32 attention heads)
- Parameters: 7 billion
- Context Length: 4096 tokens
- Vocabulary Size: 102,400
LoRA Configuration
- LoRA Rank (r): 32
- LoRA Alpha: 32
- LoRA Dropout: 0.05
- Target Modules:
- Attention:
q_proj,k_proj,v_proj,o_proj - MLP:
up_proj,down_proj,gate_proj
- Attention:
- Layers: 0-23 (all 24 layers)
- Task Type: Causal Language Modeling
Training Hyperparameters
- Learning Rate: 1e-5
- Batch Size: 1 per device
- Gradient Accumulation: 4 steps
- Optimizer: paged AdamW 8-bit
- Scheduler: Cosine decay with 20 warmup steps
- Weight Decay: 0.01
- Max Gradient Norm: 1.0
- Training Epochs: 5 per cycle
- Precision: bfloat16
Performance Metrics
Generation Performance
- Generation Success Rate: 59.13%
- Valid Generation Rate: 59.13% (123 valid out of 208 generated)
Model Quality
- Average Accuracy: 50.99% (95% CI: 50.06% - 51.92%)
- Best Accuracy: 63.98%
- Median Accuracy: 51.14%
- Quality Distribution:
- Models ≥ 40% accuracy: 96.81%
- Models ≥ 35% accuracy: 100.00%
- Models ≥ 30% accuracy: 100.00%
Intended Use
Primary Use Case
This model is designed to generate PyTorch neural network architectures for image classification tasks, specifically optimized for:
- Dataset: CIFAR-10 (32×32 RGB images, 10 classes)
- Task: Image classification
- Framework: PyTorch
- Optimization Target: First-epoch accuracy
Model Capabilities
- Generates complete, compilable PyTorch
nn.Moduleclasses - Creates architectures with proper method signatures:
__init__(self, in_shape, out_shape, prm, device)forward(self, x)train_setup(self, prm)learn(self, train_data)
- Produces novel, structurally diverse architectures
- Respects parameter constraints and resource limits
- Generates architectures optimized for fast convergence
Out-of-Scope Use Cases
- Not optimized for other datasets (MNIST, ImageNet, etc.)
- Not designed for other tasks (object detection, segmentation, etc.)
- Not optimized for multi-epoch training (focuses on first-epoch performance)
How to Use
Installation
pip install torch transformers peft accelerate
Basic Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"out/iterative_cycles_v2/cycle_18/merged_model",
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(
"out/iterative_cycles_v2/cycle_18/merged_model"
)
# Prepare prompt
system_prompt = "You are an expert PyTorch architecture designer specializing in creating UNIQUE, high-performing neural networks optimized for first-epoch accuracy."
user_prompt = """Task: Design a PyTorch CV model for image classification.
Dataset: CIFAR-10 (32×32 RGB, channels-first C×H×W).
Resource limits: params ≤ 500000; latency budget: tight (edge-friendly).
Constraints: use standard layers only; no pretrained weights.
**REQUIRED FORMAT**:
- Class name: `Net(nn.Module)`
- Constructor: `def __init__(self, in_shape: tuple, out_shape: tuple, prm: dict, device: torch.device) -> None`
- Forward: `def forward(self, x: torch.Tensor) -> torch.Tensor`
- REQUIRED METHODS: `train_setup(self, prm)` and `learn(self, train_data)`
- REQUIRED FUNCTION: `def supported_hyperparameters(): return {'lr', 'momentum'}`
- REQUIRED IMPORTS: `import torch` and `import torch.nn as nn`
**PRIMARY OBJECTIVE**: Achieve MAXIMUM ACCURACY after FIRST EPOCH of training on CIFAR-10."""
# Format as chat
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
# Tokenize
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=2048,
temperature=0.20,
top_k=50,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)
Generation Parameters (Recommended)
- Temperature: 0.20 (focused, deterministic)
- Top-k: 50
- Top-p: 0.9
- Max New Tokens: 2048
- Do Sample: True
Training Data
Initial Training Data
- Source: Curated from LEMUR database
- Size: 1,698 examples (after deduplication)
- Format: Chat format with system/user/assistant messages
- Content: PyTorch neural network architectures with accuracy scores
Evaluation
Evaluation Protocol
- Dataset: CIFAR-10
- Training: 1 epoch only
- Hyperparameters (fixed):
- Learning rate: 0.01
- Momentum: 0.9
- Batch size: 10
- Optimizer: SGD
- Data augmentation: Normalization + random horizontal flip
- Metric: First-epoch accuracy
Validation Process
- Compilation Check: Verify Python syntax and PyTorch compatibility
- Training: Train for 1 epoch on CIFAR-10
- Evaluation: Compute accuracy on test set
- Novelty Check: AST-based structural analysis to ensure uniqueness
Limitations
- Dataset Specificity: Optimized for CIFAR-10; may not generalize to other datasets
- Single Epoch Focus: Optimized for first-epoch performance, not long-term training
- Fixed Evaluation Protocol: Uses fixed hyperparameters; may not reflect best-case performance
- Computational Cost: Requires significant GPU memory (~20-30GB for inference)
- Generation Variability: Success rate is ~59%; some generations may fail validation
Citation
If you use this model, please cite:
@article{nn_novelty_generation_2025,
title={Emergent Architectural Novelty in Deep Models via LLM–Driven Synthesis},
author={Waleed Khalid, Dr. Dimytro Ignatove and Prof. Dr. Radu Timofte},
journal={Proceedings of ACL 2025},
year={2025}
}
Model Card Information
- Model Type: Causal Language Model (Decoder-only)
- Language: Python (PyTorch code generation)
- License: Check base model license (DeepSeek-Coder-7B-Instruct-v1.5)
- Fine-Tuning Date: 2025
- Fine-Tuning Method: Iterative Supervised Fine-Tuning with LoRA
- Base Model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
Acknowledgments
- Base model: DeepSeek-Coder-7B-Instruct-v1.5
- Training framework: HuggingFace Transformers, PEFT (LoRA)
- Evaluation: CIFAR-10 dataset
Model Details
- Developed by: [Waleed Khalid / ABrain]
- Finetuned from model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
- Model type: Causal Language Model (Transformer-based)
- Language(s) (NLP): Primarily English (or multilingual, if applicable)
- License: MIT
Model Sources
- Repository: ABrain/NNGPT-UniqueArch-Rag
Note: This model was trained through an iterative fine-tuning process over 22 cycles. Cycle 18 (This) represents the best-performing checkpoint with optimal balance of accuracy, quality, and generation success rate.
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support