File size: 12,449 Bytes
211b431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from PIL import Image
import pandas as pd
import numpy as np
import os
from pathlib import Path
import scipy.io
import shutil
import torch
import time
import cv2
from torchvision import models, transforms

from utils.logger_setup import logger
from extractor import visualise_vgg_layer, visualise_resnet_layer, visualise_vit_layer, vf_extract


def load_metadata(video_type):
    print(f'video_type: {video_type}\n')
    # Test
    if video_type == 'test':
        return pd.read_csv("../metadata/test_videos.csv")
    # NR:
    elif video_type == 'resolution_ugc':
        resolution = '360P'
        return pd.read_csv(f"../metadata/YOUTUBE_UGC_{resolution}_metadata.csv")
    else:
        return pd.read_csv(f'../metadata/{video_type.upper()}_metadata.csv')

def get_video_paths(network_name, video_type, videodata, i):
    video_name = videodata['vid'][i]
    video_width = videodata['width'][i]
    video_height = videodata['height'][i]
    pixfmt = videodata['pixfmt'][i]
    framerate = videodata['framerate'][i]
    common_path = os.path.join('..', 'video_sampled_frame')

    # Test
    if video_type == 'test':
        video_path = f"../ugc_original_videos/{video_name}.mp4"

    # NR:
    elif video_type == 'konvid_1k':
        video_path = Path("D:/video_dataset/KoNViD_1k/KoNViD_1k_videos") / f"{video_name}.mp4"
    elif video_type == 'lsvq_train' or video_type == 'lsvq_test' or video_type == 'lsvq_test_1080P':
        print(f'video_name: {video_name}')
        video_path = Path("D:/video_dataset/LSVQ") / f"{video_name}.mp4"
        print(f'video_path: {video_path}')
        video_name = os.path.splitext(os.path.basename(video_path))[0]
    elif video_type == 'live_vqc':
        video_path = Path("D:/video_dataset/LIVE-VQC/video") / f"{video_name}.mp4"
    elif video_type == 'live_qualcomm':
        video_path = Path("D:/video_dataset/LIVE-Qualcomm") / f"{video_name}.yuv"
        video_name = os.path.splitext(os.path.basename(video_path))[0]
    elif video_type == 'cvd_2014':
        video_path = Path("D:/video_dataset/CVD2014") / f"{video_name}.avi"
        video_name = os.path.splitext(os.path.basename(video_path))[0]
    elif video_type == 'youtube_ugc':
        video_path = Path("D:/video_dataset/ugc-dataset/youtube_ugc/") / f"{video_name}.mkv"
        video_name = os.path.splitext(os.path.basename(video_path))[0]
    sampled_frame_path = os.path.join(common_path, f'pool', f'video_{str(i + 1)}')
    feature_name = f"{network_name}_feature_map"

    if video_type == 'resolution_ugc':
        resolution = '360P'
        # video_path = f'/user/work/um20242/dataset/ugc-dataset/{resolution}/{video_name}.mkv'
        video_path = Path(f"D:/video_dataset/ugc-dataset/youtube_ugc/original_videos/{resolution}") / f"{video_name}.mkv"
        sampled_frame_path = os.path.join(common_path, f'ytugc_sampled_frame_{resolution}', f'video_{str(i + 1)}')
        feature_name = f"{network_name}_feature_map_{resolution}"

    return video_name, video_path, sampled_frame_path, feature_name, video_width, video_height, pixfmt, framerate

def get_deep_feature(network_name, video_name, frame, frame_number, model, device, layer_name):
    png_path = f'../visualisation/{network_name}_{layer_name}/{video_name}/'
    os.makedirs(png_path, exist_ok=True)

    if network_name == 'resnet50':
        if layer_name == 'pool':
            visual_layer = 'resnet50.avgpool' # before avg_pool
            resnet50 = model
            activations_dict, _, total_flops, total_params = visualise_resnet_layer.process_video_frame(video_name, frame, frame_number, visual_layer, resnet50, device)

    elif network_name == 'vgg16':
        if layer_name == 'pool':
            # visual_layer = 'fc1'
            visual_layer = 'fc2' # fc1 = vgg16.classifier[0], fc2 = vgg16.classifier[3]
            vgg16 = model
            activations_dict, _, total_flops, total_params = visualise_vgg_layer.process_video_frame(video_name, frame, frame_number, visual_layer, vgg16, device)

    elif network_name == 'vit':
        patch_size = 16
        activations_dict, _, total_flops, total_params = visualise_vit_layer.process_video_frame(video_name, frame, frame_number, model, patch_size, device)

    return png_path, activations_dict, total_flops, total_params

def process_video_feature(video_feature, network_name, layer_name):
    # print(f'video frame number: {len(video_feature)}')

    # initialize an empty list to store processed frames
    averaged_frames = []
    # iterate through each frame in the video_feature
    for frame in video_feature:
        frame_features = []

        if layer_name == 'pool':
            if network_name == 'vit':
                # global mean and std
                global_mean = torch.mean(frame, dim=0)
                global_max = torch.max(frame, dim=0)[0]
                global_std = torch.std(frame, dim=0)
                # concatenate all pooling
                combined_features = torch.hstack([global_mean, global_max, global_std])
                frame_features.append(combined_features)

            elif network_name == 'resnet50':
                frame = torch.squeeze(torch.tensor(frame))
                # global mean and std
                global_mean = torch.mean(frame, dim=0)
                global_max = torch.max(frame, dim=0)[0]
                global_std = torch.std(frame, dim=0)
                # concatenate all pooling
                combined_features = torch.hstack([frame, global_mean, global_max, global_std])
                frame_features.append(combined_features)

        # concatenate the layer means horizontally to form the processed frame
        processed_frame = torch.hstack(frame_features)
        averaged_frames.append(processed_frame)
    averaged_frames = torch.stack(averaged_frames)

    # output the shape of the resulting feature vector
    logger.debug(f"Shape of feature vector after global pooling: {averaged_frames.shape}")
    return averaged_frames

def flow_to_rgb(flow):
    mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
    mag = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
    # convert angle to hue
    hue = ang * 180 / np.pi / 2

    # create HSV
    hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
    hsv[..., 0] = hue
    hsv[..., 1] = 255
    hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
    # convert HSV to RGB
    rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    return rgb

# Frame Differencing
def compute_frame_difference(frame_tensor, frame_next_tensor):
    residual = torch.abs(frame_next_tensor - frame_tensor)
    return residual

# Optical Flow
def compute_optical_flow(frame, frame_next, device):
    flow = cv2.calcOpticalFlowFarneback(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY),
                                        cv2.cvtColor(frame_next, cv2.COLOR_BGR2GRAY),
                                        None, 0.5, 3, 15, 3, 5, 1.2, 0)
    opticalflow_rgb = flow_to_rgb(flow)
    opticalflow_rgb_tensor = transforms.ToTensor()(opticalflow_rgb).unsqueeze(0).to(device)
    return opticalflow_rgb_tensor


if __name__ == '__main__':
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    if device.type == "cuda":
        torch.cuda.set_device(0)
    # device = torch.device("cpu")

    video_type = 'test' # test
                        # resolution_ugc/konvid_1k/live_vqc/cvd_2014/live_qualcomm
                        # lsvq_train/lsvq_test/lsvq_test_1080P/
    frame_name = 'sampled_frame' # sampled_frame, frame_diff, optical_flow
    network_name = 'vit'
    layer_name = 'pool'
    if network_name == 'vit':
        model = visualise_vit_layer.VitGenerator('vit_base', 16, device, evaluate=True, random=False, verbose=True)
    elif network_name == 'resnet50':
        model = models.resnet50(pretrained=True).to(device)
    else:
        model = models.vgg16(pretrained=True).to(device)

    logger.info(f"video type: {video_type}, frame name: {frame_name}, network name: {network_name}, layer name: {layer_name}")
    logger.info(f"torch cuda: {torch.cuda.is_available()}")

    videodata = load_metadata(video_type)
    valid_video_types = ['test',
                         'resolution_ugc', 'konvid_1k', 'live_vqc', 'cvd_2014', 'live_qualcomm',
                         'lsvq_train', 'lsvq_test', 'lsvq_test_1080P']

    begin_time = time.time()
    if video_type in valid_video_types:
        for i in range(len(videodata)):
            start_time = time.time()

            video_name, video_path, sampled_frame_path, feature_name, video_width, video_height, pixfmt, framerate = get_video_paths(network_name, video_type, videodata, i)
            frames, frames_next = vf_extract.process_video_residual(video_type, video_name, framerate, video_path, sampled_frame_path)

            logger.info(f'{video_name}')
            all_frame_activations_feats = []
            for j, (frame, frame_next) in enumerate(zip(frames, frames_next)):
                frame_number = j + 1

                # DNN feature extraction
                if frame_name in ['frame_diff', 'optical_flow']:
                    # compute residual
                    frame_tensor = transforms.ToTensor()(frame).unsqueeze(0).to(device)
                    frame_next_tensor = transforms.ToTensor()(frame_next).unsqueeze(0).to(device)

                    if frame_name == 'frame_diff':
                        residual = compute_frame_difference(frame_tensor, frame_next_tensor)
                        png_path, frag_activations, total_flops, total_params = get_deep_feature(network_name, video_name, residual, frame_number, model, device, layer_name)

                    elif frame_name == 'optical_flow':
                        opticalflow_rgb_tensor = compute_optical_flow(frame, frame_next, device)
                        png_path, frag_activations, total_flops, total_params = get_deep_feature(network_name, video_name, opticalflow_rgb_tensor, frame_number, model, device, layer_name)

                elif frame_name == 'sampled_frame':
                    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    frame_rgb_tensor = transforms.ToTensor()(frame_rgb).unsqueeze(0).to(device)
                    png_path, frag_activations, total_flops, total_params = get_deep_feature(network_name, video_name, frame_rgb_tensor, frame_number, model, device, layer_name)

                # feature combined
                all_frame_activations_feats.append(frag_activations)

            averaged_frames_feats = process_video_feature(all_frame_activations_feats, network_name, layer_name)
            print("Features shape:", averaged_frames_feats.shape)
            # remove tmp folders
            shutil.rmtree(png_path)
            shutil.rmtree(sampled_frame_path)

            averaged_npy = averaged_frames_feats.cpu().numpy()
            # save the processed data as numpy file
            output_npy_path = f'../features/{video_type}/{frame_name}_{network_name}_{layer_name}/'
            os.makedirs(output_npy_path, exist_ok=True)
            # output_npy_name = f'{output_npy_path}video_{str(i + 1)}_{feature_name}.npy'
            # np.save(output_npy_name, averaged_npy)
            # print(f'Processed file saved to: {output_npy_name}')

            run_time = time.time() - start_time
            print(f"Execution time for {video_name} feature extraction: {run_time:.4f} seconds\n")

            # save feature mat file
            average_data = np.mean(averaged_npy, axis=0)
            if i == 0:
                feats_matrix = np.zeros((len(videodata),) + average_data.shape)
            feats_matrix[i] = average_data

        print((f'All features shape: {feats_matrix.shape}'))
        logger.debug(f'\n All features shape: {feats_matrix.shape}')
        mat_file_path = f'../features/{video_type}/'
        mat_file_name = f'{mat_file_path}{video_type}_{frame_name}_{network_name}_{layer_name}_feats.mat'
        scipy.io.savemat(mat_file_name, {video_type: feats_matrix})
        logger.debug(f'Successfully created {mat_file_name}')
    logger.debug(f"Execution time for all feature extraction: {time.time() - begin_time:.4f} seconds\n")