File size: 7,259 Bytes
211b431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import pandas as pd
import subprocess
import json
import os
from scipy.io import loadmat

def parse_framerate(framerate_str):
    num, den = framerate_str.split('/')
    framerate = float(num)/float(den)
    return framerate

def delete_file(file_path):
    try:
        os.remove(file_path)
    except OSError as e:
        print(f"error: {e}")

def convert_yuv_to_mp4(yuv_file, output_mp4_file, resolution, pixel_format):
    ffmpeg_path = "C://Users//um20242//ffmpeg//bin//ffmpeg.exe"
    cmd = f"{ffmpeg_path} -y -s {resolution} -pix_fmt {pixel_format} -i {yuv_file} -c:v libx264 {output_mp4_file}"
    try:
        subprocess.run(cmd, shell=True, check=True)
    except subprocess.CalledProcessError as e:
        print(f"error: {e}")
        return False
    return True

def get_video_metadata(video_file):
    print(video_file)
    ffprobe_path = "C://Users//um20242//ffmpeg//bin//ffprobe.exe"
    cmd = f'{ffprobe_path} -v error -select_streams v:0 -show_entries stream=width,height,nb_frames,r_frame_rate,bit_rate,bits_per_raw_sample,pix_fmt -of json {video_file}'

    try:
        result = subprocess.run(cmd, shell=True, capture_output=True, check=True)
        info = json.loads(result.stdout)
    except Exception as e:
        print(f"Error processing file {video_file}: {e}")
        return {}

    # get metadata using ffmpeg
    width = info['streams'][0]['width']
    height = info['streams'][0]['height']
    nb_frames = info['streams'][0].get('nb_frames', 'N/A')  # Number of frames might not be available for some formats
    pixfmt = info['streams'][0]['pix_fmt']
    framerate = info['streams'][0]['r_frame_rate']
    framerate = parse_framerate(framerate)
    bitdepth = info['streams'][0].get('bits_per_raw_sample', 'N/A')
    bitrate = info['streams'][0].get('bit_rate', 'N/A')
    print(framerate)

    return width, height, nb_frames, pixfmt, framerate, bitdepth, bitrate

def create_dataframe(vid_list, mos_list, width_list, height_list, pixfmt_list, framerate_list, nb_frames_list, bitdepth_list, bitrate_list):
    data = {
        'vid': vid_list,
        'mos': mos_list,
        'width': width_list,
        'height': height_list,
        'pixfmt': pixfmt_list,
        'framerate': framerate_list,
        'nb_frames': nb_frames_list,
        'bitdepth': bitdepth_list,
        'bitrate': bitrate_list
    }
    df_new = pd.DataFrame(data)
    return df_new

def extract_csv2metadata(df, video_type):
    vid_list = []
    mos_list = []
    width_list = []
    height_list = []
    nb_frames_list = []
    pixfmt_list = []
    framerate_list = []
    bitdepth_list = []
    bitrate_list = []
    if video_type == 'lsvq':
        for i in range(len(df)):
            video_path = f"D://video_dataset//LSVQ//{df['name'][i]}.mp4"
            if os.path.exists(video_path):
                vid_list.append(df['name'][i])
                mos_list.append(df['mos'][i])
                width_list.append(df['width'][i])
                height_list.append(df['height'][i])
                nb_frames_list.append(df['frame_number'][i])

                _, _, _, pixfmt, framerate, bitdepth, bitrate = get_video_metadata(video_path)
                pixfmt_list.append(pixfmt)
                framerate_list.append(framerate)
                bitdepth_list.append(bitdepth)
                bitrate_list.append(bitrate)
            else:
                pass

    elif video_type == 'live_vqc':
        vid_list = df['vid'].tolist()
        vid_list = [vid.replace('.mp4', '') for vid in vid_list]
        mos_list = df['mos'].tolist()
        width_list = df['width'].tolist()
        height_list = df['height'].tolist()
        pixfmt_list = df['pixfmt'].tolist()
        framerate_list = df['framerate'].tolist()
        nb_frames_list = df['nb_frames'].tolist()
        bitdepth_list = df['bitdepth'].tolist()
        bitrate_list = df['bitrate'].tolist()

    df_new = create_dataframe(vid_list, mos_list, width_list, height_list, pixfmt_list, framerate_list, nb_frames_list, bitdepth_list, bitrate_list)
    return df_new

def extract_mat2metadata(mat_file, video_type):
    data = loadmat(mat_file)
    all_variables = {}
    for key, value in data.items():
        # ignore '__'
        if not key.startswith('__') and not key.endswith('__'):
            all_variables[key] = value

    vid_list = []
    mos_list = []
    width_list = []
    height_list = []
    nb_frames_list = []
    pixfmt_list = []
    framerate_list = []
    bitdepth_list = []
    bitrate_list = []
    for i in range(len(all_variables['video_names'])):
        vid = all_variables['video_names'][i].flatten()[0].item()
        mos = all_variables['scores'][i].flatten()[0].item()

        if video_type == 'cvd_2014':
            video_name = vid.replace('.avi', '')
            video_path = f"D://video_dataset//CVD2014//{video_name}.avi"
        elif video_type == 'live_qualcomm':
            video_name = vid.replace('.yuv', '')
            tmp_yuv_file = f"D://video_dataset//LIVE-Qualcomm//{video_name}.yuv"
            video_path = f"D://video_dataset//LIVE-Qualcomm//{video_name}.mp4"
            convert_yuv_to_mp4(tmp_yuv_file, video_path, "1920x1080", "yuv420p")

        width, height, nb_frames, pixfmt, framerate, bitdepth, bitrate = get_video_metadata(video_path)
        vid_list.append(video_name)
        mos_list.append(mos)
        width_list.append(width)
        height_list.append(height)
        nb_frames_list.append(nb_frames)
        pixfmt_list.append(pixfmt)
        framerate_list.append(framerate)
        bitdepth_list.append(bitdepth)
        bitrate_list.append(bitrate)
        if video_type == 'live_qualcomm':
            delete_file(video_path)

    df_new = create_dataframe(vid_list, mos_list, width_list, height_list, pixfmt_list, framerate_list, nb_frames_list, bitdepth_list, bitrate_list)
    return df_new

def save_to_csv(dataframe, output_path):
    dataframe.to_csv(output_path, index=False)

if __name__ == '__main__':

    video_type = 'live_vqc'
    print(video_type)

    # LSVQ
    if video_type == 'lsvq':
        set_name = 'train' #train, test, test_1080P
        df = pd.read_csv(f"D://video_dataset//LSVQ//LSVQ_whole_{set_name}.csv")
        df_new = extract_csv2metadata(df, video_type)
        print(df_new)
        video_type = f'LSVQ_{set_name.upper()}'

    # LIVE_VQC
    elif video_type == 'live_vqc':
        df = pd.read_csv(f"D://video_dataset//LIVE-VQC//LIVE_VQC_metadata.csv")
        df_new = extract_csv2metadata(df, video_type)
        print(df_new)

    # CVD2014
    elif video_type == 'cvd_2014':
        mat_file = "D://video_dataset//CVD2014//CVD2014info.mat"
        df_new = extract_mat2metadata(mat_file, video_type)
        print(df_new)

    # LIVE-Qualcomm
    elif video_type == 'live_qualcomm':
        mat_file = "D://video_dataset//LIVE-Qualcomm//LIVE-Qualcomminfo.mat"
        df_new = extract_mat2metadata(mat_file, video_type)
        print(df_new)

    output_csv_path = f'../../metadata/{video_type.upper()}_metadata.csv'
    save_to_csv(df_new, output_csv_path)