Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -50,6 +50,13 @@ def load_custom_model():
|
|
| 50 |
model.eval()
|
| 51 |
return model
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Function to process the uploaded .p file and perform inference using the custom model
|
| 54 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
| 55 |
capture = PrintCapture()
|
|
@@ -59,32 +66,58 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 59 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
| 60 |
model_repo_dir = "./LWM"
|
| 61 |
|
|
|
|
| 62 |
if not os.path.exists(model_repo_dir):
|
| 63 |
print(f"Cloning model repository from {model_repo_url}...")
|
| 64 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 65 |
-
|
|
|
|
| 66 |
if os.path.exists(model_repo_dir):
|
| 67 |
os.chdir(model_repo_dir)
|
| 68 |
print(f"Changed working directory to {os.getcwd()}")
|
|
|
|
| 69 |
else:
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
-
# Add
|
| 73 |
if model_repo_dir not in sys.path:
|
| 74 |
sys.path.append(model_repo_dir)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
model = LWM.from_pretrained(device=device)
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
|
|
|
| 83 |
with open(uploaded_file.name, 'rb') as f:
|
| 84 |
manual_data = pickle.load(f)
|
| 85 |
|
|
|
|
| 86 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 87 |
|
|
|
|
| 88 |
from inference import lwm_inference, create_raw_dataset
|
| 89 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 90 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
|
@@ -92,13 +125,15 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 92 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
| 93 |
print(f"Output Raw Shape: {output_raw.shape}")
|
| 94 |
|
|
|
|
| 95 |
return output_emb, output_raw, capture.get_output()
|
| 96 |
|
| 97 |
except Exception as e:
|
|
|
|
| 98 |
return str(e), str(e), capture.get_output()
|
| 99 |
|
| 100 |
finally:
|
| 101 |
-
sys.stdout = sys.__stdout__ # Reset
|
| 102 |
|
| 103 |
# Function to handle logic based on whether a file is uploaded or not
|
| 104 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
|
|
|
| 50 |
model.eval()
|
| 51 |
return model
|
| 52 |
|
| 53 |
+
import sys
|
| 54 |
+
import subprocess
|
| 55 |
+
import os
|
| 56 |
+
import pickle
|
| 57 |
+
import torch
|
| 58 |
+
import io
|
| 59 |
+
|
| 60 |
# Function to process the uploaded .p file and perform inference using the custom model
|
| 61 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
| 62 |
capture = PrintCapture()
|
|
|
|
| 66 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
| 67 |
model_repo_dir = "./LWM"
|
| 68 |
|
| 69 |
+
# Step 1: Clone the model repository if not already cloned
|
| 70 |
if not os.path.exists(model_repo_dir):
|
| 71 |
print(f"Cloning model repository from {model_repo_url}...")
|
| 72 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 73 |
+
|
| 74 |
+
# Debugging: Check if the directory exists and print contents
|
| 75 |
if os.path.exists(model_repo_dir):
|
| 76 |
os.chdir(model_repo_dir)
|
| 77 |
print(f"Changed working directory to {os.getcwd()}")
|
| 78 |
+
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
|
| 79 |
else:
|
| 80 |
+
print(f"Directory {model_repo_dir} does not exist.")
|
| 81 |
+
return
|
| 82 |
|
| 83 |
+
# Step 2: Add the cloned repo to sys.path for imports
|
| 84 |
if model_repo_dir not in sys.path:
|
| 85 |
sys.path.append(model_repo_dir)
|
| 86 |
+
|
| 87 |
+
# Debugging: Print sys.path to ensure the cloned repo is in the path
|
| 88 |
+
print(f"sys.path: {sys.path}")
|
| 89 |
+
|
| 90 |
+
# Step 3: Dynamically import the model after cloning
|
| 91 |
+
try:
|
| 92 |
+
from lwm_model import LWM # Custom model in the cloned repo
|
| 93 |
+
print("Successfully imported LWM model.")
|
| 94 |
+
except ImportError as e:
|
| 95 |
+
print(f"Error importing LWM model: {e}")
|
| 96 |
+
print("Make sure lwm_model.py exists in the cloned repository.")
|
| 97 |
+
return
|
| 98 |
+
|
| 99 |
+
# Step 4: Check if GPU is available and set the device
|
| 100 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 101 |
+
print(f"Using device: {device}")
|
| 102 |
+
|
| 103 |
+
# Load the model from the cloned repository
|
| 104 |
model = LWM.from_pretrained(device=device)
|
| 105 |
|
| 106 |
+
# Step 5: Import the tokenizer
|
| 107 |
+
try:
|
| 108 |
+
from input_preprocess import tokenizer
|
| 109 |
+
except ImportError as e:
|
| 110 |
+
print(f"Error importing tokenizer: {e}")
|
| 111 |
+
return
|
| 112 |
|
| 113 |
+
# Step 6: Load the uploaded .p file (wireless channel matrix)
|
| 114 |
with open(uploaded_file.name, 'rb') as f:
|
| 115 |
manual_data = pickle.load(f)
|
| 116 |
|
| 117 |
+
# Step 7: Tokenize the data if needed (or perform any necessary preprocessing)
|
| 118 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 119 |
|
| 120 |
+
# Step 8: Perform inference using the model
|
| 121 |
from inference import lwm_inference, create_raw_dataset
|
| 122 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 123 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
|
|
|
| 125 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
| 126 |
print(f"Output Raw Shape: {output_raw.shape}")
|
| 127 |
|
| 128 |
+
# Return the embeddings, raw output, and captured output
|
| 129 |
return output_emb, output_raw, capture.get_output()
|
| 130 |
|
| 131 |
except Exception as e:
|
| 132 |
+
# Handle exceptions and return the captured output
|
| 133 |
return str(e), str(e), capture.get_output()
|
| 134 |
|
| 135 |
finally:
|
| 136 |
+
sys.stdout = sys.__stdout__ # Reset stdout
|
| 137 |
|
| 138 |
# Function to handle logic based on whether a file is uploaded or not
|
| 139 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|