Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -84,18 +84,21 @@ def split_dataset(channels, labels, percentage_idx):
|
|
| 84 |
def euclidean_distance(x, centroid):
|
| 85 |
return np.linalg.norm(x - centroid)
|
| 86 |
|
| 87 |
-
|
|
|
|
| 88 |
def classify_based_on_distance(train_data, train_labels, test_data):
|
| 89 |
-
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
predictions = []
|
| 93 |
for test_point in test_data:
|
|
|
|
| 94 |
dist_0 = euclidean_distance(test_point, centroid_0)
|
| 95 |
dist_1 = euclidean_distance(test_point, centroid_1)
|
| 96 |
predictions.append(0 if dist_0 < dist_1 else 1)
|
| 97 |
|
| 98 |
-
return
|
| 99 |
|
| 100 |
# Function to generate confusion matrix plot
|
| 101 |
def plot_confusion_matrix(y_true, y_pred, title):
|
|
|
|
| 84 |
def euclidean_distance(x, centroid):
|
| 85 |
return np.linalg.norm(x - centroid)
|
| 86 |
|
| 87 |
+
import torch
|
| 88 |
+
|
| 89 |
def classify_based_on_distance(train_data, train_labels, test_data):
|
| 90 |
+
# Compute the centroids for the two classes
|
| 91 |
+
centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean
|
| 92 |
+
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean
|
| 93 |
|
| 94 |
predictions = []
|
| 95 |
for test_point in test_data:
|
| 96 |
+
# Compute Euclidean distance between the test point and each centroid
|
| 97 |
dist_0 = euclidean_distance(test_point, centroid_0)
|
| 98 |
dist_1 = euclidean_distance(test_point, centroid_1)
|
| 99 |
predictions.append(0 if dist_0 < dist_1 else 1)
|
| 100 |
|
| 101 |
+
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
| 102 |
|
| 103 |
# Function to generate confusion matrix plot
|
| 104 |
def plot_confusion_matrix(y_true, y_pred, title):
|