Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -324,49 +324,36 @@ def classify_based_on_distance(train_data, train_labels, test_data):
|
|
| 324 |
|
| 325 |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
| 326 |
|
| 327 |
-
def plot_confusion_matrix(y_true, y_pred, title
|
| 328 |
cm = confusion_matrix(y_true, y_pred)
|
| 329 |
-
|
| 330 |
# Calculate F1 Score
|
| 331 |
f1 = f1_score(y_true, y_pred, average='weighted')
|
| 332 |
|
| 333 |
-
|
| 334 |
-
if light_mode:
|
| 335 |
-
plt.style.use('default') # Light mode styling
|
| 336 |
-
text_color = 'black'
|
| 337 |
-
cmap = 'Blues' # Light-mode-friendly colormap
|
| 338 |
-
else:
|
| 339 |
-
plt.style.use('dark_background') # Dark mode styling
|
| 340 |
-
text_color = 'white'
|
| 341 |
-
cmap = 'magma' # Dark-mode-friendly colormap
|
| 342 |
-
|
| 343 |
plt.figure(figsize=(5, 5))
|
| 344 |
-
|
| 345 |
-
# Plot the confusion matrix with a
|
| 346 |
-
sns.heatmap(cm, annot=True, fmt="d", cmap=
|
| 347 |
-
|
| 348 |
-
|
| 349 |
# Add F1-score to the title
|
| 350 |
-
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=
|
| 351 |
-
|
| 352 |
-
# Customize tick labels for
|
| 353 |
-
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
| 354 |
-
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
| 355 |
-
|
| 356 |
-
plt.ylabel('True label', color=
|
| 357 |
-
plt.xlabel('Predicted label', color=
|
| 358 |
plt.tight_layout()
|
| 359 |
-
|
| 360 |
-
# Save the plot as an image
|
| 361 |
-
plt.savefig(
|
| 362 |
plt.close()
|
| 363 |
-
|
| 364 |
-
# Check if the file exists and can be opened
|
| 365 |
-
if not os.path.exists(save_path):
|
| 366 |
-
raise FileNotFoundError(f"File {save_path} not found.")
|
| 367 |
-
|
| 368 |
# Return the saved image
|
| 369 |
-
return Image.open(
|
|
|
|
| 370 |
|
| 371 |
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
|
| 372 |
N = output_emb.shape[0]
|
|
@@ -574,7 +561,7 @@ with gr.Blocks(css="""
|
|
| 574 |
# Add a conclusion section at the bottom
|
| 575 |
gr.Markdown("""
|
| 576 |
<div class="explanation-box">
|
| 577 |
-
|
| 578 |
</div>
|
| 579 |
""")
|
| 580 |
|
|
@@ -636,7 +623,7 @@ with gr.Blocks(css="""
|
|
| 636 |
# Add a conclusion section at the bottom
|
| 637 |
gr.Markdown("""
|
| 638 |
<div class="explanation-box">
|
| 639 |
-
|
| 640 |
</div>
|
| 641 |
""")
|
| 642 |
|
|
|
|
| 324 |
|
| 325 |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
| 326 |
|
| 327 |
+
def plot_confusion_matrix(y_true, y_pred, title):
|
| 328 |
cm = confusion_matrix(y_true, y_pred)
|
| 329 |
+
|
| 330 |
# Calculate F1 Score
|
| 331 |
f1 = f1_score(y_true, y_pred, average='weighted')
|
| 332 |
|
| 333 |
+
plt.style.use('dark_background')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
plt.figure(figsize=(5, 5))
|
| 335 |
+
|
| 336 |
+
# Plot the confusion matrix with a dark-mode compatible colormap
|
| 337 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="magma", cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
|
| 338 |
+
|
|
|
|
| 339 |
# Add F1-score to the title
|
| 340 |
+
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color="white", fontsize=14)
|
| 341 |
+
|
| 342 |
+
# Customize tick labels for dark mode
|
| 343 |
+
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
|
| 344 |
+
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
|
| 345 |
+
|
| 346 |
+
plt.ylabel('True label', color="white", fontsize=12)
|
| 347 |
+
plt.xlabel('Predicted label', color="white", fontsize=12)
|
| 348 |
plt.tight_layout()
|
| 349 |
+
|
| 350 |
+
# Save the plot as an image
|
| 351 |
+
plt.savefig(f"{title}.png", transparent=True) # Use transparent to blend with the dark mode website
|
| 352 |
plt.close()
|
| 353 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
# Return the saved image
|
| 355 |
+
return Image.open(f"{title}.png")
|
| 356 |
+
|
| 357 |
|
| 358 |
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
|
| 359 |
N = output_emb.shape[0]
|
|
|
|
| 561 |
# Add a conclusion section at the bottom
|
| 562 |
gr.Markdown("""
|
| 563 |
<div class="explanation-box">
|
| 564 |
+
<b>Conclusions<b>: LWM embeddings offer such high generalization that with just a limited number of training samples, we can get high performances.
|
| 565 |
</div>
|
| 566 |
""")
|
| 567 |
|
|
|
|
| 623 |
# Add a conclusion section at the bottom
|
| 624 |
gr.Markdown("""
|
| 625 |
<div class="explanation-box">
|
| 626 |
+
<b>Conclusions<b>: LWM CLS embeddings, although very small (raw channels size / 32), offer a rich and holistic knowledge about channels, making them suitable for a task like LoS/NLoS classfication, specifically with very limited data.
|
| 627 |
</div>
|
| 628 |
""")
|
| 629 |
|