Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -130,6 +130,10 @@ LOS_PATH = "images_LoS"
|
|
| 130 |
percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values
|
| 131 |
|
| 132 |
# Function to compute confusion matrix and plot it
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
| 134 |
# Load CSV file
|
| 135 |
data = pd.read_csv(csv_file_path)
|
|
@@ -141,27 +145,29 @@ def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
|
| 141 |
# Compute confusion matrix
|
| 142 |
cm = confusion_matrix(y_true, y_pred)
|
| 143 |
|
| 144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
plt.figure(figsize=(5, 5))
|
| 146 |
-
plt.imshow(cm, interpolation='nearest', cmap='Blues')
|
| 147 |
-
plt.title(title)
|
| 148 |
-
plt.colorbar()
|
| 149 |
-
plt.xticks([0, 1], labels=['Class 0', 'Class 1'])
|
| 150 |
-
plt.yticks([0, 1], labels=['Class 0', 'Class 1'])
|
| 151 |
|
| 152 |
-
#
|
| 153 |
-
|
| 154 |
-
for i in range(cm.shape[0]):
|
| 155 |
-
for j in range(cm.shape[1]):
|
| 156 |
-
plt.text(j, i, format(cm[i, j], 'd'), ha="center", va="center",
|
| 157 |
-
color="white" if cm[i, j] > thresh else "black")
|
| 158 |
|
| 159 |
-
|
| 160 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
plt.tight_layout()
|
| 162 |
|
| 163 |
# Save the plot as an image
|
| 164 |
-
plt.savefig(save_path)
|
| 165 |
plt.close()
|
| 166 |
|
| 167 |
# Return the saved image
|
|
@@ -473,7 +479,8 @@ with gr.Blocks(css="""
|
|
| 473 |
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
|
| 474 |
|
| 475 |
# Dropdown for selecting percentage for predefined data
|
| 476 |
-
percentage_dropdown_los = gr.Dropdown(choices=[f"{value:.3f}" for value in percentage_values_los], value=f"{percentage_values_los[0]:.3f}", label="Percentage of Data for Training")
|
|
|
|
| 477 |
|
| 478 |
# File uploader for dataset (only visible if user chooses to upload a dataset)
|
| 479 |
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)
|
|
|
|
| 130 |
percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values
|
| 131 |
|
| 132 |
# Function to compute confusion matrix and plot it
|
| 133 |
+
from sklearn.metrics import f1_score
|
| 134 |
+
import seaborn as sns
|
| 135 |
+
|
| 136 |
+
# Function to compute confusion matrix, F1-score and plot it with dark mode style
|
| 137 |
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
| 138 |
# Load CSV file
|
| 139 |
data = pd.read_csv(csv_file_path)
|
|
|
|
| 145 |
# Compute confusion matrix
|
| 146 |
cm = confusion_matrix(y_true, y_pred)
|
| 147 |
|
| 148 |
+
# Compute F1-score
|
| 149 |
+
f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score
|
| 150 |
+
|
| 151 |
+
# Set dark mode styling
|
| 152 |
+
plt.style.use('dark_background')
|
| 153 |
plt.figure(figsize=(5, 5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
# Plot the confusion matrix with a dark-mode compatible colormap
|
| 156 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="magma", cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
# Add F1-score to the title
|
| 159 |
+
plt.title(f"{title} (F1 Score: {f1:.3f})", color="white", fontsize=14)
|
| 160 |
+
|
| 161 |
+
# Customize tick labels for dark mode
|
| 162 |
+
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
|
| 163 |
+
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
|
| 164 |
+
|
| 165 |
+
plt.ylabel('True label', color="white", fontsize=12)
|
| 166 |
+
plt.xlabel('Predicted label', color="white", fontsize=12)
|
| 167 |
plt.tight_layout()
|
| 168 |
|
| 169 |
# Save the plot as an image
|
| 170 |
+
plt.savefig(save_path, transparent=True) # Use transparent to blend with the dark mode website
|
| 171 |
plt.close()
|
| 172 |
|
| 173 |
# Return the saved image
|
|
|
|
| 479 |
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
|
| 480 |
|
| 481 |
# Dropdown for selecting percentage for predefined data
|
| 482 |
+
#percentage_dropdown_los = gr.Dropdown(choices=[f"{value:.3f}" for value in percentage_values_los], value=f"{percentage_values_los[0]:.3f}", label="Percentage of Data for Training")
|
| 483 |
+
percentage_dropdown_los = gr.Dropdown(choices=list(range(20)), value=0, label="Percentage of Data for Training")
|
| 484 |
|
| 485 |
# File uploader for dataset (only visible if user chooses to upload a dataset)
|
| 486 |
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)
|