Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,7 +62,6 @@ def compute_f1_score(cm):
|
|
| 62 |
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
| 63 |
return np.mean(f1) # Return the mean F1-score across all classes
|
| 64 |
|
| 65 |
-
# Function to plot and save confusion matrix with F1-score in the title
|
| 66 |
def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
| 67 |
# Compute the average F1-score
|
| 68 |
avg_f1 = compute_f1_score(cm)
|
|
@@ -70,20 +69,22 @@ def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
|
| 70 |
# Update title to include average F1-score
|
| 71 |
full_title = f"{title} (Avg F1-Score: {avg_f1:.2f})"
|
| 72 |
|
| 73 |
-
# Plot the confusion matrix
|
| 74 |
plt.figure(figsize=(8, 6))
|
| 75 |
-
plt.imshow(cm, interpolation='nearest', cmap='coolwarm')
|
| 76 |
-
plt.title(full_title)
|
| 77 |
plt.colorbar()
|
| 78 |
|
| 79 |
tick_marks = np.arange(len(classes))
|
| 80 |
-
plt.xticks(tick_marks, classes, rotation=45)
|
| 81 |
-
plt.yticks(tick_marks, classes)
|
| 82 |
|
| 83 |
-
plt.tight_layout()
|
| 84 |
-
plt.ylabel('True label')
|
| 85 |
-
plt.xlabel('Predicted label')
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
plt.close()
|
| 88 |
|
| 89 |
def compute_average_confusion_matrix(folder):
|
|
@@ -135,7 +136,6 @@ percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values
|
|
| 135 |
from sklearn.metrics import f1_score
|
| 136 |
import seaborn as sns
|
| 137 |
|
| 138 |
-
# Function to compute confusion matrix, F1-score and plot it with dark mode style
|
| 139 |
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
| 140 |
# Load CSV file
|
| 141 |
data = pd.read_csv(csv_file_path)
|
|
@@ -147,29 +147,30 @@ def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
|
| 147 |
# Compute confusion matrix
|
| 148 |
cm = confusion_matrix(y_true, y_pred)
|
| 149 |
|
| 150 |
-
#
|
| 151 |
-
f1 = f1_score(y_true, y_pred, average='
|
| 152 |
-
|
| 153 |
-
#
|
| 154 |
-
plt.style.use('dark_background')
|
| 155 |
plt.figure(figsize=(5, 5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
# Customize tick labels for dark mode
|
| 164 |
-
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
|
| 165 |
-
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
|
| 166 |
|
| 167 |
-
plt.ylabel('True label', color=
|
| 168 |
-
plt.xlabel('Predicted label', color=
|
| 169 |
-
plt.tight_layout()
|
| 170 |
|
| 171 |
# Save the plot as an image
|
| 172 |
-
plt.savefig(save_path,
|
| 173 |
plt.close()
|
| 174 |
|
| 175 |
# Return the saved image
|
|
@@ -304,32 +305,39 @@ def classify_based_on_distance(train_data, train_labels, test_data):
|
|
| 304 |
|
| 305 |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
| 306 |
|
| 307 |
-
# Function to generate confusion matrix plot
|
| 308 |
def plot_confusion_matrix(y_true, y_pred, title):
|
| 309 |
cm = confusion_matrix(y_true, y_pred)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
plt.figure(figsize=(5, 5))
|
| 311 |
-
plt.imshow(cm, cmap='
|
| 312 |
-
plt.title(title)
|
| 313 |
-
plt.xlabel('Predicted')
|
| 314 |
-
plt.ylabel('Actual')
|
| 315 |
plt.colorbar()
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
plt.yticks([0, 1], labels=[0, 1])
|
| 320 |
-
|
| 321 |
# Annotate the confusion matrix
|
| 322 |
-
thresh = cm.max() / 2
|
| 323 |
for i in range(cm.shape[0]):
|
| 324 |
for j in range(cm.shape[1]):
|
| 325 |
plt.text(j, i, format(cm[i, j], 'd'),
|
| 326 |
ha="center", va="center",
|
| 327 |
color="white" if cm[i, j] > thresh else "black")
|
| 328 |
|
| 329 |
-
plt.
|
| 330 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
return Image.open(f"{title}.png")
|
| 332 |
|
|
|
|
| 333 |
def identical_train_test_split(output_emb, output_raw, labels, percentage):
|
| 334 |
N = output_emb.shape[0] # Get the total number of samples
|
| 335 |
|
|
|
|
| 62 |
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
| 63 |
return np.mean(f1) # Return the mean F1-score across all classes
|
| 64 |
|
|
|
|
| 65 |
def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
| 66 |
# Compute the average F1-score
|
| 67 |
avg_f1 = compute_f1_score(cm)
|
|
|
|
| 69 |
# Update title to include average F1-score
|
| 70 |
full_title = f"{title} (Avg F1-Score: {avg_f1:.2f})"
|
| 71 |
|
| 72 |
+
# Plot the confusion matrix with dark mode adjustments
|
| 73 |
plt.figure(figsize=(8, 6))
|
| 74 |
+
plt.imshow(cm, interpolation='nearest', cmap='coolwarm') # Dark mode color scheme
|
| 75 |
+
plt.title(full_title, color='white', pad=20) # Add padding to prevent title clipping, white text for dark mode
|
| 76 |
plt.colorbar()
|
| 77 |
|
| 78 |
tick_marks = np.arange(len(classes))
|
| 79 |
+
plt.xticks(tick_marks, classes, rotation=45, color='white') # White text for dark mode
|
| 80 |
+
plt.yticks(tick_marks, classes, color='white') # White text for dark mode
|
| 81 |
|
| 82 |
+
plt.tight_layout(pad=2.0) # Add padding to prevent axis label clipping
|
| 83 |
+
plt.ylabel('True label', color='white') # White text for dark mode
|
| 84 |
+
plt.xlabel('Predicted label', color='white') # White text for dark mode
|
| 85 |
+
|
| 86 |
+
# Save the plot with a black background for dark mode
|
| 87 |
+
plt.savefig(save_path, facecolor='black')
|
| 88 |
plt.close()
|
| 89 |
|
| 90 |
def compute_average_confusion_matrix(folder):
|
|
|
|
| 136 |
from sklearn.metrics import f1_score
|
| 137 |
import seaborn as sns
|
| 138 |
|
|
|
|
| 139 |
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
| 140 |
# Load CSV file
|
| 141 |
data = pd.read_csv(csv_file_path)
|
|
|
|
| 147 |
# Compute confusion matrix
|
| 148 |
cm = confusion_matrix(y_true, y_pred)
|
| 149 |
|
| 150 |
+
# Calculate F1 Score
|
| 151 |
+
f1 = f1_score(y_true, y_pred, average='weighted')
|
| 152 |
+
|
| 153 |
+
# Plot the confusion matrix with dark mode colors
|
|
|
|
| 154 |
plt.figure(figsize=(5, 5))
|
| 155 |
+
plt.imshow(cm, interpolation='nearest', cmap='coolwarm') # Dark mode color scheme
|
| 156 |
+
plt.title(f"{title}\nF1-Score: {f1:.2f}", color='white', pad=20) # Display F1-Score in title, add padding for better visibility
|
| 157 |
+
plt.colorbar()
|
| 158 |
+
plt.xticks([0, 1], labels=['Class 0', 'Class 1'], color='white') # White text for dark mode
|
| 159 |
+
plt.yticks([0, 1], labels=['Class 0', 'Class 1'], color='white') # White text for dark mode
|
| 160 |
|
| 161 |
+
# Annotate the confusion matrix
|
| 162 |
+
thresh = cm.max() / 2
|
| 163 |
+
for i in range(cm.shape[0]):
|
| 164 |
+
for j in range(cm.shape[1]):
|
| 165 |
+
plt.text(j, i, format(cm[i, j], 'd'), ha="center", va="center",
|
| 166 |
+
color="white" if cm[i, j] > thresh else "black")
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
plt.ylabel('True label', color='white') # White text for dark mode
|
| 169 |
+
plt.xlabel('Predicted label', color='white') # White text for dark mode
|
| 170 |
+
plt.tight_layout(pad=2.0) # Add padding to prevent clipping of labels
|
| 171 |
|
| 172 |
# Save the plot as an image
|
| 173 |
+
plt.savefig(save_path, facecolor='black') # Set background to black for dark mode
|
| 174 |
plt.close()
|
| 175 |
|
| 176 |
# Return the saved image
|
|
|
|
| 305 |
|
| 306 |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
| 307 |
|
|
|
|
| 308 |
def plot_confusion_matrix(y_true, y_pred, title):
|
| 309 |
cm = confusion_matrix(y_true, y_pred)
|
| 310 |
+
|
| 311 |
+
# Calculate F1 Score
|
| 312 |
+
f1 = f1_score(y_true, y_pred, average='weighted')
|
| 313 |
+
|
| 314 |
+
# Plot the confusion matrix with dark mode colors
|
| 315 |
plt.figure(figsize=(5, 5))
|
| 316 |
+
plt.imshow(cm, interpolation='nearest', cmap='coolwarm') # Dark mode color scheme
|
| 317 |
+
plt.title(f"{title}\nF1-Score: {f1:.2f}", color='white', pad=20) # Add padding for the title to prevent clipping
|
|
|
|
|
|
|
| 318 |
plt.colorbar()
|
| 319 |
+
plt.xticks([0, 1], labels=['Class 0', 'Class 1'], color='white') # White text for dark mode
|
| 320 |
+
plt.yticks([0, 1], labels=['Class 0', 'Class 1'], color='white') # White text for dark mode
|
| 321 |
+
|
|
|
|
|
|
|
| 322 |
# Annotate the confusion matrix
|
| 323 |
+
thresh = cm.max() / 2
|
| 324 |
for i in range(cm.shape[0]):
|
| 325 |
for j in range(cm.shape[1]):
|
| 326 |
plt.text(j, i, format(cm[i, j], 'd'),
|
| 327 |
ha="center", va="center",
|
| 328 |
color="white" if cm[i, j] > thresh else "black")
|
| 329 |
|
| 330 |
+
plt.ylabel('True label', color='white') # White text for dark mode
|
| 331 |
+
plt.xlabel('Predicted label', color='white') # White text for dark mode
|
| 332 |
+
plt.tight_layout(pad=2.0) # Add padding to prevent clipping
|
| 333 |
+
|
| 334 |
+
# Save the plot
|
| 335 |
+
plt.savefig(f"{title}.png", facecolor='black') # Set background to black for dark mode
|
| 336 |
+
plt.close()
|
| 337 |
+
|
| 338 |
return Image.open(f"{title}.png")
|
| 339 |
|
| 340 |
+
|
| 341 |
def identical_train_test_split(output_emb, output_raw, labels, percentage):
|
| 342 |
N = output_emb.shape[0] # Get the total number of samples
|
| 343 |
|