Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,118 +1,52 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# Function to
|
| 14 |
-
def
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
#
|
| 37 |
-
def los_nlos_classification(uploaded_file, percentage_idx, complexity_idx):
|
| 38 |
-
# Placeholder code for processing the uploaded .py file (can be extended)
|
| 39 |
-
# Add your LoS/NLoS classification logic here
|
| 40 |
-
raw_img, embeddings_img = display_images(percentage_idx, complexity_idx)
|
| 41 |
-
return raw_img, embeddings_img
|
| 42 |
-
|
| 43 |
-
# Define the Gradio interface
|
| 44 |
-
with gr.Blocks(css="""
|
| 45 |
-
.vertical-slider input[type=range] {
|
| 46 |
-
writing-mode: bt-lr; /* IE */
|
| 47 |
-
-webkit-appearance: slider-vertical; /* WebKit */
|
| 48 |
-
width: 8px;
|
| 49 |
-
height: 200px;
|
| 50 |
-
}
|
| 51 |
-
.slider-container {
|
| 52 |
-
display: inline-block;
|
| 53 |
-
margin-right: 50px;
|
| 54 |
-
text-align: center;
|
| 55 |
-
}
|
| 56 |
-
""") as demo:
|
| 57 |
-
|
| 58 |
-
# Contact Section
|
| 59 |
-
gr.Markdown(
|
| 60 |
-
"""
|
| 61 |
-
## Contact
|
| 62 |
-
<div style="display: flex; align-items: center;">
|
| 63 |
-
<a target="_blank" href="mailto:info@wirelessmodel.com"><img src="https://img.shields.io/badge/email-info@wirelessmodel.com-blue.svg?logo=gmail " alt="Email"></a>
|
| 64 |
-
<a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://img.shields.io/badge/telegram-@wirelessmodel-blue.svg?logo=telegram " alt="Telegram"></a>
|
| 65 |
-
</div>
|
| 66 |
-
"""
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
# Tabs for Beam Prediction and LoS/NLoS Classification
|
| 70 |
-
with gr.Tab("Beam Prediction Task"):
|
| 71 |
-
gr.Markdown("### Beam Prediction Task")
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
gr.Markdown("Percentage of Data for Training")
|
| 77 |
-
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 78 |
-
with gr.Column(elem_id="slider-container"):
|
| 79 |
-
gr.Markdown("Task Complexity")
|
| 80 |
-
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 81 |
-
|
| 82 |
-
# Image outputs (display the images side by side and set a smaller size for the images)
|
| 83 |
-
with gr.Row():
|
| 84 |
-
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
| 85 |
-
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
| 86 |
-
|
| 87 |
-
# Instant image updates when sliders change
|
| 88 |
-
percentage_slider_bp.change(fn=beam_prediction, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
| 89 |
-
complexity_slider_bp.change(fn=beam_prediction, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
| 90 |
-
|
| 91 |
-
with gr.Tab("LoS/NLoS Classification Task"):
|
| 92 |
-
gr.Markdown("### LoS/NLoS Classification Task")
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# Sliders for percentage and complexity
|
| 98 |
-
with gr.Row():
|
| 99 |
-
with gr.Column(elem_id="slider-container"):
|
| 100 |
-
gr.Markdown("Percentage of Data for Training")
|
| 101 |
-
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 102 |
-
with gr.Column(elem_id="slider-container"):
|
| 103 |
-
gr.Markdown("Task Complexity")
|
| 104 |
-
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
|
| 113 |
-
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
|
| 114 |
-
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
demo.launch()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModel # Assuming you use a transformer-like model in your LWM repo
|
| 3 |
+
import numpy as np
|
| 4 |
+
import importlib.util
|
| 5 |
+
|
| 6 |
+
# Function to load the pre-trained model from Hugging Face
|
| 7 |
+
def load_pretrained_model():
|
| 8 |
+
# Load the pre-trained model from the Hugging Face repo
|
| 9 |
+
model = AutoModel.from_pretrained("sadjadalikhani/LWM")
|
| 10 |
+
model.eval() # Set model to evaluation mode
|
| 11 |
+
return model
|
| 12 |
+
|
| 13 |
+
# Function to process the uploaded .py file and perform inference using the model
|
| 14 |
+
def process_python_file(uploaded_file, percentage_idx, complexity_idx):
|
| 15 |
+
try:
|
| 16 |
+
# Step 1: Load the model
|
| 17 |
+
model = load_pretrained_model()
|
| 18 |
+
|
| 19 |
+
# Step 2: Load the uploaded .py file that contains the wireless channel matrix
|
| 20 |
+
# Import the Python file dynamically
|
| 21 |
+
spec = importlib.util.spec_from_file_location("uploaded_module", uploaded_file.name)
|
| 22 |
+
uploaded_module = importlib.util.module_from_spec(spec)
|
| 23 |
+
spec.loader.exec_module(uploaded_module)
|
| 24 |
+
|
| 25 |
+
# Assuming the uploaded file defines a variable called 'channel_matrix'
|
| 26 |
+
channel_matrix = uploaded_module.channel_matrix # This should be defined in the uploaded file
|
| 27 |
+
|
| 28 |
+
# Step 3: Perform inference on the channel matrix using the model
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
input_tensor = torch.tensor(channel_matrix).unsqueeze(0) # Add batch dimension
|
| 31 |
+
output = model(input_tensor) # Perform inference
|
| 32 |
+
|
| 33 |
+
# Step 4: Generate new images based on the inference results
|
| 34 |
+
# You can modify this logic depending on how you want to visualize the results
|
| 35 |
+
generated_raw_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
|
| 36 |
+
generated_embeddings_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Save the generated images
|
| 39 |
+
generated_raw_image_path = os.path.join(GENERATED_PATH, f"generated_raw_{percentage_idx}_{complexity_idx}.png")
|
| 40 |
+
generated_embeddings_image_path = os.path.join(GENERATED_PATH, f"generated_embeddings_{percentage_idx}_{complexity_idx}.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
Image.fromarray(generated_raw_img.astype(np.uint8)).save(generated_raw_image_path)
|
| 43 |
+
Image.fromarray(generated_embeddings_img.astype(np.uint8)).save(generated_embeddings_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Load the generated images
|
| 46 |
+
raw_image = Image.open(generated_raw_image_path)
|
| 47 |
+
embeddings_image = Image.open(generated_embeddings_image_path)
|
|
|
|
| 48 |
|
| 49 |
+
return raw_image, embeddings_image
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return str(e), str(e)
|
|
|