Spaces:
Running
Running
| import gradio as gr | |
| import os | |
| from PIL import Image | |
| import numpy as np | |
| import pickle | |
| import io | |
| import sys | |
| import torch | |
| import subprocess | |
| import h5py | |
| from sklearn.metrics import confusion_matrix | |
| import matplotlib.pyplot as plt | |
| # Paths to the predefined images folder | |
| RAW_PATH = os.path.join("images", "raw") | |
| EMBEDDINGS_PATH = os.path.join("images", "embeddings") | |
| # Specific values for percentage of data for training | |
| percentage_values = [10, 30, 50, 70, 100] | |
| # Custom class to capture print output | |
| class PrintCapture(io.StringIO): | |
| def __init__(self): | |
| super().__init__() | |
| self.output = [] | |
| def write(self, txt): | |
| self.output.append(txt) | |
| super().write(txt) | |
| def get_output(self): | |
| return ''.join(self.output) | |
| # Function to load and display predefined images based on user selection | |
| def display_predefined_images(percentage_idx): | |
| percentage = percentage_values[percentage_idx] | |
| raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") # Assume complexity 16 for simplicity | |
| embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png") | |
| raw_image = Image.open(raw_image_path) | |
| embeddings_image = Image.open(embeddings_image_path) | |
| return raw_image, embeddings_image | |
| # Function to create random images for LoS/NLoS classification results | |
| def create_random_image(size=(300, 300)): | |
| random_image = np.random.rand(*size, 3) * 255 | |
| return Image.fromarray(random_image.astype('uint8')) | |
| # Function to load the pre-trained model from your cloned repository | |
| def load_custom_model(): | |
| from lwm_model import LWM # Assuming the model is defined in lwm_model.py | |
| model = LWM() # Modify this according to your model initialization | |
| model.eval() | |
| return model | |
| import importlib.util | |
| # Function to dynamically load a Python module from a given file path | |
| def load_module_from_path(module_name, file_path): | |
| spec = importlib.util.spec_from_file_location(module_name, file_path) | |
| module = importlib.util.module_from_spec(spec) | |
| spec.loader.exec_module(module) | |
| return module | |
| # Function to split dataset into training and test sets based on user selection | |
| def split_dataset(channels, labels, percentage_idx): | |
| percentage = percentage_values[percentage_idx] / 100 | |
| num_samples = channels.shape[0] | |
| train_size = int(num_samples * percentage) | |
| print(f'Number of Training Samples: {train_size}') | |
| indices = np.arange(num_samples) | |
| np.random.shuffle(indices) | |
| train_idx, test_idx = indices[:train_size], indices[train_size:] | |
| train_data, test_data = channels[train_idx], channels[test_idx] | |
| train_labels, test_labels = labels[train_idx], labels[test_idx] | |
| return train_data, test_data, train_labels, test_labels | |
| # Function to calculate Euclidean distance between a point and a centroid | |
| def euclidean_distance(x, centroid): | |
| return np.linalg.norm(x - centroid) | |
| # Function to classify test data based on distance to class centroids | |
| def classify_based_on_distance(train_data, train_labels, test_data): | |
| centroid_0 = np.mean(train_data[train_labels == 0], axis=0) | |
| centroid_1 = np.mean(train_data[train_labels == 1], axis=0) | |
| predictions = [] | |
| for test_point in test_data: | |
| dist_0 = euclidean_distance(test_point, centroid_0) | |
| dist_1 = euclidean_distance(test_point, centroid_1) | |
| predictions.append(0 if dist_0 < dist_1 else 1) | |
| return np.array(predictions) | |
| # Function to generate confusion matrix plot | |
| def plot_confusion_matrix(y_true, y_pred, title): | |
| cm = confusion_matrix(y_true, y_pred) | |
| plt.figure(figsize=(5, 5)) | |
| plt.imshow(cm, cmap='Blues') | |
| plt.title(title) | |
| plt.xlabel('Predicted') | |
| plt.ylabel('Actual') | |
| plt.colorbar() | |
| plt.xticks([0, 1], labels=[0, 1]) | |
| plt.yticks([0, 1], labels=[0, 1]) | |
| plt.tight_layout() | |
| plt.savefig(f"{title}.png") | |
| return Image.open(f"{title}.png") | |
| # Function to process the uploaded HDF5 file and perform classification using the custom model | |
| def process_hdf5_file(uploaded_file, percentage_idx): | |
| capture = PrintCapture() | |
| sys.stdout = capture # Redirect print statements to capture | |
| try: | |
| model_repo_url = "https://huggingface.co/sadjadalikhani/LWM" | |
| model_repo_dir = "./LWM" | |
| # Step 1: Clone the repository if not already done | |
| if not os.path.exists(model_repo_dir): | |
| print(f"Cloning model repository from {model_repo_url}...") | |
| subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) | |
| # Step 2: Verify the repository was cloned and change the working directory | |
| if os.path.exists(model_repo_dir): | |
| os.chdir(model_repo_dir) | |
| print(f"Changed working directory to {os.getcwd()}") | |
| print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content | |
| else: | |
| print(f"Directory {model_repo_dir} does not exist.") | |
| return | |
| # Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py | |
| lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py') | |
| input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py') | |
| inference_path = os.path.join(os.getcwd(), 'inference.py') | |
| # Load lwm_model | |
| lwm_model = load_module_from_path("lwm_model", lwm_model_path) | |
| # Load input_preprocess | |
| input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path) | |
| # Load inference | |
| inference = load_module_from_path("inference", inference_path) | |
| # Step 4: Load the model from lwm_model module | |
| device = 'cpu' | |
| print(f"Loading the LWM model on {device}...") | |
| model = lwm_model.LWM.from_pretrained(device=device) | |
| # Step 5: Load the HDF5 file and extract the channels and labels | |
| with h5py.File(uploaded_file.name, 'r') as f: | |
| channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file | |
| labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file | |
| print(f"Loaded dataset with {channels.shape[0]} samples.") | |
| # Step 6: Split the dataset into training and test sets | |
| train_data_raw, test_data_raw, train_labels, test_labels = split_dataset(channels, labels, percentage_idx) | |
| # Step 7: Tokenize the data using the tokenizer from input_preprocess | |
| preprocessed_chs = input_preprocess.tokenizer(manual_data=channels) | |
| train_data_emb, test_data_emb, _, _ = split_dataset(preprocessed_chs, labels, percentage_idx) | |
| # Step 8: Perform classification using the Euclidean distance for both raw and embeddings | |
| pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw) | |
| pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb) | |
| # Step 9: Generate confusion matrices for both raw and embeddings | |
| raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)") | |
| emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)") | |
| return raw_cm_image, emb_cm_image, capture.get_output() | |
| except Exception as e: | |
| return str(e), str(e), capture.get_output() | |
| finally: | |
| sys.stdout = sys.__stdout__ # Reset print statements | |
| # Function to handle logic based on whether a file is uploaded or not | |
| def los_nlos_classification(file, percentage_idx): | |
| if file is not None: | |
| return process_hdf5_file(file, percentage_idx) | |
| else: | |
| return display_predefined_images(percentage_idx), None | |
| # Define the Gradio interface | |
| with gr.Blocks(css=""" | |
| .vertical-slider input[type=range] { | |
| writing-mode: bt-lr; /* IE */ | |
| -webkit-appearance: slider-vertical; /* WebKit */ | |
| width: 8px; | |
| height: 200px; | |
| } | |
| .slider-container { | |
| display: inline-block; | |
| margin-right: 50px; | |
| text-align: center; | |
| } | |
| """) as demo: | |
| # Contact Section | |
| gr.Markdown( | |
| """ | |
| ## Contact | |
| <div style="display: flex; align-items: center;"> | |
| <a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a> | |
| <a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail " alt="Email"></a> | |
| </div> | |
| """ | |
| ) | |
| # Tabs for Beam Prediction and LoS/NLoS Classification | |
| with gr.Tab("Beam Prediction Task"): | |
| gr.Markdown("### Beam Prediction Task") | |
| with gr.Row(): | |
| with gr.Column(elem_id="slider-container"): | |
| gr.Markdown("Percentage of Data for Training") | |
| percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
| with gr.Row(): | |
| raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
| embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
| percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) | |
| with gr.Tab("LoS/NLoS Classification Task"): | |
| gr.Markdown("### LoS/NLoS Classification Task") | |
| file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"]) | |
| with gr.Row(): | |
| with gr.Column(elem_id="slider-container"): | |
| gr.Markdown("Percentage of Data for Training") | |
| percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
| with gr.Row(): | |
| raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
| embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
| output_textbox = gr.Textbox(label="Console Output", lines=10) | |
| file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) | |
| percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.launch() | |