Spaces:
Sleeping
Sleeping
Update embed_lwm.py
Browse files- embed_lwm.py +151 -59
embed_lwm.py
CHANGED
|
@@ -1,48 +1,114 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
-
from typing import List,
|
| 4 |
|
| 5 |
import torch
|
| 6 |
-
from huggingface_hub import snapshot_download
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def get_lwm_encoder():
|
| 14 |
"""
|
| 15 |
-
Try to
|
| 16 |
-
Returns a torch.nn.Module or None
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
-
if
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
try:
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
break
|
| 34 |
-
if cand:
|
| 35 |
-
state = torch.load(cand, map_location="cpu")
|
| 36 |
-
# handle optional "module." prefix
|
| 37 |
-
if any(k.startswith("module.") for k in state.keys()):
|
| 38 |
-
model.load_state_dict(state)
|
| 39 |
else:
|
| 40 |
-
|
|
|
|
| 41 |
model.eval()
|
| 42 |
-
|
| 43 |
-
return _LWM_MODEL
|
| 44 |
except Exception as e:
|
| 45 |
-
|
| 46 |
return None
|
| 47 |
|
| 48 |
|
|
@@ -52,36 +118,62 @@ def build_lwm_embeddings(
|
|
| 52 |
datasets: List[Tuple[torch.Tensor, Optional[torch.Tensor], str]],
|
| 53 |
n_per_dataset: int,
|
| 54 |
label_aware: bool
|
| 55 |
-
):
|
| 56 |
"""
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
"""
|
| 60 |
-
|
| 61 |
-
model = model.to(device)
|
| 62 |
-
|
| 63 |
-
embs = []
|
| 64 |
labels_per_ds = [] if label_aware else None
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
from typing import List, Optional, Tuple
|
| 4 |
|
| 5 |
import torch
|
|
|
|
| 6 |
|
| 7 |
+
def _log(msg: str):
|
| 8 |
+
print(msg, flush=True)
|
| 9 |
|
| 10 |
+
def _candidate_repo_dirs():
|
| 11 |
+
return [
|
| 12 |
+
os.getenv("LWM_REPO_DIR", "").strip(),
|
| 13 |
+
"./LWM-v1.1",
|
| 14 |
+
"/home/user/app/LWM-v1.1",
|
| 15 |
+
]
|
| 16 |
|
| 17 |
+
def _ensure_repo_on_path() -> Optional[str]:
|
| 18 |
+
for d in _candidate_repo_dirs():
|
| 19 |
+
if d and os.path.isdir(d):
|
| 20 |
+
if d not in sys.path:
|
| 21 |
+
sys.path.insert(0, d)
|
| 22 |
+
return d
|
| 23 |
+
return None
|
| 24 |
+
|
| 25 |
+
def _ensure_pretrained_model_shim(repo_dir: str) -> None:
|
| 26 |
+
"""
|
| 27 |
+
Some LWM examples import: `from pretrained_model import lwm`
|
| 28 |
+
If the repo doesn't ship `pretrained_model.py`, but has `lwm_model.py` with class `LWM`,
|
| 29 |
+
we create a tiny shim so imports succeed.
|
| 30 |
+
"""
|
| 31 |
+
shim_path = os.path.join(repo_dir, "pretrained_model.py")
|
| 32 |
+
lwm_path = os.path.join(repo_dir, "lwm_model.py")
|
| 33 |
+
if os.path.isfile(shim_path):
|
| 34 |
+
return
|
| 35 |
+
if not os.path.isfile(lwm_path):
|
| 36 |
+
return # nothing we can do
|
| 37 |
+
|
| 38 |
+
# Create a simple factory around LWM
|
| 39 |
+
shim_code = """# Auto-generated shim to satisfy `from pretrained_model import lwm`
|
| 40 |
+
import torch
|
| 41 |
+
try:
|
| 42 |
+
from lwm_model import LWM
|
| 43 |
+
except Exception as e:
|
| 44 |
+
raise ImportError(f"Shim could not import LWM from lwm_model.py: {e}")
|
| 45 |
+
|
| 46 |
+
def lwm():
|
| 47 |
+
# Build a default LWM encoder (adjust constructor args if your repo requires them)
|
| 48 |
+
return LWM()
|
| 49 |
+
"""
|
| 50 |
+
try:
|
| 51 |
+
with open(shim_path, "w", encoding="utf-8") as f:
|
| 52 |
+
f.write(shim_code)
|
| 53 |
+
_log(f"[INFO] Created shim: {shim_path}")
|
| 54 |
+
except Exception as e:
|
| 55 |
+
_log(f"[WARN] Could not create pretrained_model shim: {e}")
|
| 56 |
+
|
| 57 |
+
def _maybe_load_weights(model, repo_dir: str):
|
| 58 |
+
# Try common weight locations
|
| 59 |
+
candidates = [
|
| 60 |
+
os.path.join(repo_dir, "models", "model.pth"),
|
| 61 |
+
os.path.join(repo_dir, "model.pth"),
|
| 62 |
+
]
|
| 63 |
+
for w in candidates:
|
| 64 |
+
if os.path.isfile(w):
|
| 65 |
+
try:
|
| 66 |
+
sd = torch.load(w, map_location="cpu")
|
| 67 |
+
# Sometimes saved as {'model': state_dict}
|
| 68 |
+
if isinstance(sd, dict) and "state_dict" in sd:
|
| 69 |
+
sd = sd["state_dict"]
|
| 70 |
+
elif isinstance(sd, dict) and "model" in sd:
|
| 71 |
+
sd = sd["model"]
|
| 72 |
+
model.load_state_dict(sd, strict=False)
|
| 73 |
+
_log(f"[INFO] Loaded LWM weights from {w}")
|
| 74 |
+
return
|
| 75 |
+
except Exception as e:
|
| 76 |
+
_log(f"[WARN] Failed to load weights from {w}: {e}")
|
| 77 |
+
_log("[WARN] No weights file found; using randomly-initialized LWM.")
|
| 78 |
|
| 79 |
def get_lwm_encoder():
|
| 80 |
"""
|
| 81 |
+
Try to build an LWM encoder using the cloned repo.
|
| 82 |
+
Returns a torch.nn.Module or None.
|
| 83 |
"""
|
| 84 |
+
repo_dir = _ensure_repo_on_path()
|
| 85 |
+
if not repo_dir:
|
| 86 |
+
_log("[WARN] LWM repo not found; set LWM_REPO_DIR or clone to ./LWM-v1.1")
|
| 87 |
+
return None
|
| 88 |
+
|
| 89 |
+
# If the repo's modules expect `pretrained_model`, make sure it exists
|
| 90 |
+
_ensure_pretrained_model_shim(repo_dir)
|
| 91 |
+
|
| 92 |
+
# Try the most common entry point used in examples
|
| 93 |
try:
|
| 94 |
+
# Import order: prefer pretrained_model.lwm() if available
|
| 95 |
+
import pretrained_model # type: ignore
|
| 96 |
+
if hasattr(pretrained_model, "lwm"):
|
| 97 |
+
model = pretrained_model.lwm()
|
| 98 |
+
else:
|
| 99 |
+
# Fallback: try lwm_model directly
|
| 100 |
+
import lwm_model # type: ignore
|
| 101 |
+
if hasattr(lwm_model, "LWM"):
|
| 102 |
+
model = lwm_model.LWM()
|
| 103 |
+
elif hasattr(lwm_model, "build_model"):
|
| 104 |
+
model = lwm_model.build_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
+
raise ImportError("No LWM builder found in lwm_model or pretrained_model")
|
| 107 |
+
_maybe_load_weights(model, repo_dir)
|
| 108 |
model.eval()
|
| 109 |
+
return model
|
|
|
|
| 110 |
except Exception as e:
|
| 111 |
+
_log(f"[WARN] Failed to load LWM encoder: {e}")
|
| 112 |
return None
|
| 113 |
|
| 114 |
|
|
|
|
| 118 |
datasets: List[Tuple[torch.Tensor, Optional[torch.Tensor], str]],
|
| 119 |
n_per_dataset: int,
|
| 120 |
label_aware: bool
|
| 121 |
+
) -> Tuple[torch.Tensor, Optional[List[torch.Tensor]]]:
|
| 122 |
"""
|
| 123 |
+
Generic embedding builder:
|
| 124 |
+
- Flattens each complex channel (concat real/imag),
|
| 125 |
+
- Forwards through the model if it accepts a flat vector,
|
| 126 |
+
- Pads to a common embedding dim.
|
| 127 |
+
If forward fails, falls back to the raw flattened vector.
|
| 128 |
"""
|
| 129 |
+
all_feats = []
|
|
|
|
|
|
|
|
|
|
| 130 |
labels_per_ds = [] if label_aware else None
|
| 131 |
|
| 132 |
+
try:
|
| 133 |
+
device = next(model.parameters()).device
|
| 134 |
+
except StopIteration:
|
| 135 |
+
device = torch.device("cpu")
|
| 136 |
+
model = model.to(device).eval()
|
| 137 |
+
|
| 138 |
+
for chs, y, _name in datasets:
|
| 139 |
+
n = min(int(n_per_dataset), int(chs.shape[0]))
|
| 140 |
+
idx = torch.randperm(chs.shape[0])[:n]
|
| 141 |
+
sub = chs[idx]
|
| 142 |
+
feats_this = []
|
| 143 |
+
|
| 144 |
+
for x in sub:
|
| 145 |
+
if x.ndim > 2:
|
| 146 |
+
x = x.squeeze(0)
|
| 147 |
+
vec = x.reshape(-1)
|
| 148 |
+
if torch.is_complex(vec):
|
| 149 |
+
vec = torch.cat([vec.real, vec.imag], dim=0)
|
| 150 |
+
vec = vec.to(torch.float32).unsqueeze(0).to(device) # [1, d]
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
out = model(vec) # adapt here if your model expects another shape
|
| 154 |
+
out = out.reshape(1, -1).detach().cpu()
|
| 155 |
+
except Exception:
|
| 156 |
+
# If the model forward signature mismatches, use the raw vector
|
| 157 |
+
out = vec.detach().cpu()
|
| 158 |
+
|
| 159 |
+
feats_this.append(out)
|
| 160 |
+
|
| 161 |
+
embs_this = torch.cat(feats_this, dim=0) # [n, d’]
|
| 162 |
+
all_feats.append(embs_this)
|
| 163 |
+
|
| 164 |
+
if label_aware and y is not None and y.numel() > 0:
|
| 165 |
+
labels_per_ds.append(y[idx].clone())
|
| 166 |
+
|
| 167 |
+
# Pad to common dim
|
| 168 |
+
max_d = max(t.shape[1] for t in all_feats)
|
| 169 |
+
padded = []
|
| 170 |
+
for t in all_feats:
|
| 171 |
+
if t.shape[1] < max_d:
|
| 172 |
+
pad = torch.zeros((t.shape[0], max_d - t.shape[1]), dtype=t.dtype)
|
| 173 |
+
t = torch.cat([t, pad], dim=1)
|
| 174 |
+
padded.append(t)
|
| 175 |
+
|
| 176 |
+
embs = torch.stack(padded, dim=0) # [D, n, d]
|
| 177 |
+
if label_aware:
|
| 178 |
+
return embs, labels_per_ds if labels_per_ds is not None else []
|
| 179 |
+
return embs, None
|