Spaces:
Running
Running
File size: 16,835 Bytes
f0949fa cd5b954 f0949fa cd5b954 f0949fa c5f5103 f0949fa cd5b954 c6177bf cd5b954 4410a6f d854d43 4410a6f cd5b954 c7df97b 4410a6f c7df97b d854d43 c7df97b cd5b954 c7df97b cd5b954 c7df97b cd5b954 c5f5103 cd5b954 c5f5103 cd5b954 c5f5103 cd5b954 c6177bf cd5b954 c6177bf f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa c6177bf cd5b954 c6177bf cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 c6177bf cd5b954 c6177bf cd5b954 f0949fa cd5b954 c6177bf f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 c6177bf cd5b954 c6177bf cd5b954 c6177bf cd5b954 c6177bf cd5b954 4410a6f cd5b954 7729549 cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa cd5b954 f0949fa c5f5103 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import os
import sys
import json
from typing import List, Tuple, Optional, Dict
# Use a non-GUI backend for Matplotlib
import matplotlib
matplotlib.use("Agg")
import numpy as np
import torch
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
from io_demo import (
list_demo_tasks, list_demo_dataset_files, load_pt_dataset,
)
from distances_common import (
pairwise_centroid_distances,
pairwise_cosine_similarity_distances,
sliced_wasserstein_distance_matrix,
)
from embed_raw import build_raw_embeddings
from embed_umap import build_umap_embeddings
from embed_lwm import get_lwm_encoder, build_lwm_embeddings
# ------------------------
# Small helpers / logging
# ------------------------
def _log(msg: str):
print(msg, flush=True)
def _matrix_payload(np_mat: np.ndarray, labels: Optional[List[str]] = None):
"""
Return a safe gr.update payload for a Dataframe (headers must match col_count).
"""
df = pd.DataFrame(np_mat)
# Format values to always show 3 decimal places
df = df.round(3)
# Format each value to show exactly 3 decimal places
for col in df.columns:
df[col] = df[col].apply(lambda x: f"{x:.3f}")
if labels is not None and len(labels) == df.shape[0]:
df.index = labels
if labels is not None and len(labels) == df.shape[1]:
df.columns = labels
return gr.update(
value=df,
headers=list(df.columns),
col_count=(df.shape[1], "fixed"),
row_count=(df.shape[0], "fixed")
)
def _plot_heatmap(D: np.ndarray, labels: Optional[List[str]] = None) -> np.ndarray:
"""Return an RGB image (as numpy array) of the heatmap."""
# Set dark mode style
plt.style.use('dark_background')
fig, ax = plt.subplots(figsize=(6, 5), dpi=200, facecolor='#1e1e1e')
ax.set_facecolor('#1e1e1e')
im = ax.imshow(D, cmap="magma")
cbar = plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.ax.tick_params(colors='white') # Light colorbar labels
if labels and len(labels) == D.shape[0]:
ax.set_xticks(np.arange(len(labels)))
ax.set_yticks(np.arange(len(labels)))
ax.set_xticklabels(labels, rotation=60, ha="right", fontsize=8, color='white')
ax.set_yticklabels(labels, fontsize=8, color='white')
ax.set_title("Dataset Distance Matrix", color='white')
ax.grid(False)
# Set axis colors to light
ax.spines['bottom'].set_color('white')
ax.spines['top'].set_color('white')
ax.spines['right'].set_color('white')
ax.spines['left'].set_color('white')
ax.tick_params(colors='white', which='both')
fig.tight_layout()
# Render and grab RGBA buffer (works across Matplotlib versions)
fig.canvas.draw()
width, height = fig.canvas.get_width_height()
buf = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_rgba = buf.reshape((height, width, 4))
img_rgb = img_rgba[..., :3].copy()
plt.close(fig)
return img_rgb
def _load_uploaded_files(file_objs: List) -> List[Tuple[torch.Tensor, Optional[torch.Tensor], str]]:
"""Load uploaded datasets. Expect torch files with keys: 'channels', 'labels' (optional)."""
out = []
for f in (file_objs or []):
path = getattr(f, "name", f)
try:
obj = torch.load(path, map_location="cpu")
ch = obj["channels"]
y = obj.get("labels", None)
out.append((ch, y, os.path.basename(path)))
except Exception as e:
_log(f"[WARN] Failed to load {path}: {e}")
return out
def _load_demo_files(paths: List[str]) -> List[Tuple[torch.Tensor, Optional[torch.Tensor], str]]:
out = []
for p in paths or []:
try:
ch, y = load_pt_dataset(p)
# scenario folder name as label
out.append((ch, y, os.path.basename(os.path.dirname(p))))
except Exception as e:
_log(f"[WARN] Failed to load demo dataset {p}: {e}")
return out
def _compute_embeddings(
framework: str,
datasets: List[Tuple[torch.Tensor, Optional[torch.Tensor], str]],
n_per_dataset: int,
label_aware: bool,
umap_cfg: Dict
):
"""
Returns:
embs: torch.Tensor [D, n, d]
labels_per_ds: Optional[List[torch.Tensor]]
"""
if framework == "RAW":
embs, labels_per_ds = build_raw_embeddings(datasets, n_per_dataset, label_aware)
return embs, labels_per_ds
if framework == "UMAP":
embs, labels_per_ds = build_umap_embeddings(
datasets=datasets,
n_per_dataset=n_per_dataset,
label_aware=label_aware,
umap_mode=umap_cfg.get("mode", "supervised"),
umap_kwargs=umap_cfg.get("kwargs", {}),
channel_representation=umap_cfg.get("repr", "raw"),
angle_delay_bins=int(umap_cfg.get("angle_delay_bins", 16)),
)
return embs, labels_per_ds
if framework == "LWM":
model = get_lwm_encoder()
if model is None:
_log("[WARN] LWM encoder not available; falling back to RAW embeddings.")
embs, labels_per_ds = build_raw_embeddings(datasets, n_per_dataset, label_aware)
else:
embs, labels_per_ds = build_lwm_embeddings(
model=model,
datasets=datasets,
n_per_dataset=n_per_dataset,
label_aware=label_aware
)
return embs, labels_per_ds
raise ValueError(f"Unknown framework: {framework}")
def _compute_distance_matrix(
embs: torch.Tensor,
distance_mode: str,
num_projections: int,
label_aware: bool,
labels_per_ds: Optional[List[torch.Tensor]],
label_weighting: str,
label_max_per_class: int
) -> torch.Tensor:
"""
embs: [D, n, d]
"""
if distance_mode == "euclidean_centroid" and not label_aware:
cents = embs.mean(dim=1) # [D, d]
return pairwise_centroid_distances(cents)
if distance_mode == "cosine_similarity" and not label_aware:
cents = embs.mean(dim=1) # [D, d]
return pairwise_cosine_similarity_distances(cents)
# Sliced Wasserstein (supports label-aware)
return sliced_wasserstein_distance_matrix(
embs,
num_projections=num_projections,
labels_per_ds=labels_per_ds,
label_aware=label_aware,
label_weighting=label_weighting,
label_max_per_class=label_max_per_class
)
# ------------------------
# Gradio callbacks
# ------------------------
def refresh_demo_tasks():
tasks = list_demo_tasks()
return gr.update(choices=tasks, value=(tasks[0] if tasks else None))
def refresh_demo_scenarios(task: str):
if not task:
return gr.update(choices=[], value=[])
files = list_demo_dataset_files(task)
default = files[:3] if len(files) >= 3 else files
return gr.update(choices=files, value=default)
def run_compute(
framework: str,
distance_mode: str,
label_aware: bool,
label_weighting: str,
label_max_per_class: int,
num_projections: int,
n_eval_per_dataset: int,
demo_task: str,
demo_files: List[str],
uploaded_files: List,
umap_mode: str,
umap_n_components: int,
umap_n_neighbors: int,
umap_min_dist: float,
umap_metric: str,
umap_spread: float,
umap_learning_rate: float,
umap_n_epochs: int,
umap_negative_sample_rate: int,
umap_init: str,
umap_densmap: bool,
umap_set_op_mix_ratio: float,
umap_local_connectivity: float,
umap_repulsion_strength: float,
umap_random_state: int,
channel_representation: str,
angle_delay_bins: int,
):
datasets = []
if demo_task and demo_files:
datasets.extend(_load_demo_files(demo_files))
datasets.extend(_load_uploaded_files(uploaded_files))
if len(datasets) < 2:
return (
gr.update(value="Please provide at least 2 datasets (demo or upload)."),
_matrix_payload(np.zeros((0, 0))),
None
)
names = [name for _, _, name in datasets]
umap_kwargs = dict(
n_components=int(umap_n_components),
n_neighbors=int(umap_n_neighbors),
min_dist=float(umap_min_dist),
metric=umap_metric,
spread=float(umap_spread),
learning_rate=float(umap_learning_rate),
n_epochs=None if umap_n_epochs in [None, 0] else int(umap_n_epochs),
negative_sample_rate=int(umap_negative_sample_rate),
init=umap_init,
densmap=bool(umap_densmap),
set_op_mix_ratio=float(umap_set_op_mix_ratio),
local_connectivity=float(umap_local_connectivity),
repulsion_strength=float(umap_repulsion_strength),
random_state=int(umap_random_state),
target_metric="categorical",
target_weight=0.5,
)
embs, labels_per_ds = _compute_embeddings(
framework=framework,
datasets=datasets,
n_per_dataset=int(n_eval_per_dataset),
label_aware=bool(label_aware),
umap_cfg={
"mode": umap_mode,
"kwargs": umap_kwargs,
"repr": channel_representation,
"angle_delay_bins": int(angle_delay_bins),
}
)
D = _compute_distance_matrix(
embs=embs,
distance_mode=distance_mode,
num_projections=int(num_projections),
label_aware=bool(label_aware),
labels_per_ds=labels_per_ds,
label_weighting=label_weighting,
label_max_per_class=int(label_max_per_class),
)
D_np = D.detach().cpu().numpy()
# Normalize distance matrix to [0, 1] range (min-max normalization)
d_min = D_np.min()
d_max = D_np.max()
if d_max > d_min: # Avoid division by zero
D_np = (D_np - d_min) / (d_max - d_min)
else:
D_np = np.zeros_like(D_np) # All values are the same, set to 0
img = _plot_heatmap(D_np, labels=names)
return (
gr.update(value="Done β
"),
_matrix_payload(D_np, labels=names),
img
)
# ------------------------
# UI
# ------------------------
with gr.Blocks(title="Dataset Distancing Lab") as demo:
gr.Markdown(
"""
# Dataset Distancing Lab
Compute distances between datasets using **RAW**, **UMAP**, or **LWM** embeddings.
Upload your `.pt`/`.p` datasets or try the built-in samples under `data/{task}/{scenario}/...`.
**Format:** each file should be a Torch file with keys:
- `channels`: `Tensor[N, ...]` (complex supported; real+imag will be concatenated)
- `labels` (optional): `Tensor[N]`
"""
)
with gr.Accordion("π Citation", open=False):
gr.Markdown(
"""
If you use this lab or methods in your work, please cite:
```bibtex
@INPROCEEDINGS{10942657,
author={Morais, JoΓ£o and Alikhani, Sadjad and Malhotra, Akshay and Hamidi-Rad, Shahab and Alkhateeb, Ahmed},
booktitle={2024 58th Asilomar Conference on Signals, Systems, and Computers},
title={A Dataset Similarity Evaluation Framework for Wireless Communications and Sensing},
year={2024},
volume={},
number={},
pages={1144-1149},
keywords={Wireless communication;Dimensionality reduction;Adaptation models;Wireless sensor networks;Nearest neighbor methods;Extraterrestrial measurements;Data structures;Distance measurement;Data models;Sensors},
doi={10.1109/IEEECONF60004.2024.10942657}}
```
"""
)
with gr.Row():
with gr.Column(scale=1, min_width=320):
gr.Markdown("### Framework & Distance")
framework = gr.Radio(
choices=["RAW", "UMAP", "LWM"],
value="RAW",
label="Framework",
)
distance_mode = gr.Radio(
choices=["sliced_wasserstein", "euclidean_centroid", "cosine_similarity"],
value="sliced_wasserstein",
label="Distance Mode"
)
label_aware = gr.Checkbox(value=True, label="Label-aware (supported by SW distance)")
label_weighting = gr.Dropdown(
choices=["uniform", "support"],
value="uniform",
label="Label weighting"
)
label_max_per_class = gr.Number(value=1e10, precision=0, label="Max samples / class")
num_projections = gr.Slider(8, 256, value=64, step=1, label="SW #projections")
n_eval_per_dataset = gr.Slider(32, 4096, value=1024, step=32, label="Samples per dataset")
gr.Markdown("### UMAP (only if Framework=UMAP)")
umap_mode = gr.Dropdown(["unsupervised", "supervised"], value="supervised", label="UMAP Mode")
channel_representation = gr.Dropdown(["raw", "angle_delay"], value="raw", label="Channel representation")
angle_delay_bins = gr.Slider(4, 128, value=16, step=1, label="Angle-delay bins (if used)")
with gr.Accordion("Advanced UMAP settings", open=False):
umap_n_components = gr.Slider(2, 256, value=128, step=1, label="n_components")
umap_n_neighbors = gr.Slider(2, 128, value=32, step=1, label="n_neighbors")
umap_min_dist = gr.Slider(0.0, 0.99, value=0.1, step=0.01, label="min_dist")
umap_metric = gr.Dropdown(
["euclidean", "cosine", "manhattan", "chebyshev", "correlation"],
value="euclidean", label="metric"
)
umap_spread = gr.Slider(0.1, 5.0, value=1.0, step=0.1, label="spread")
umap_learning_rate = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="learning_rate")
umap_n_epochs = gr.Number(value=0, precision=0, label="n_epochs (0 = auto)")
umap_negative_sample_rate = gr.Slider(1, 50, value=5, step=1, label="negative_sample_rate")
umap_init = gr.Dropdown(["spectral", "random"], value="spectral", label="init")
umap_densmap = gr.Checkbox(value=False, label="densMAP")
umap_set_op_mix_ratio = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="set_op_mix_ratio")
umap_local_connectivity = gr.Slider(1.0, 10.0, value=1.0, step=0.5, label="local_connectivity")
umap_repulsion_strength = gr.Slider(0.1, 5.0, value=1.0, step=0.1, label="repulsion_strength")
umap_random_state = gr.Number(value=42, precision=0, label="random_state")
with gr.Column(scale=1, min_width=320):
gr.Markdown("### Demo datasets (data/{task}/{scenario}/...)")
demo_task = gr.Dropdown(choices=[], value=None, label="Task", interactive=True)
demo_select = gr.CheckboxGroup(choices=[], value=[], label="Scenarios (files inside each scenario)")
refresh = gr.Button("π Refresh Demo Lists")
refresh.click(
fn=refresh_demo_tasks,
inputs=[],
outputs=[demo_task]
)
demo_task.change(
fn=refresh_demo_scenarios,
inputs=[demo_task],
outputs=[demo_select]
)
gr.Markdown("### Or upload your own")
uploads = gr.Files(
label="Upload multiple .pt/.p datasets",
file_count="multiple",
file_types=[".pt", ".p"]
)
run_btn = gr.Button("π Compute distances", variant="primary")
status = gr.Markdown("")
with gr.Column(scale=2):
gr.Markdown("### Distance Matrix (Table)")
matrix_out = gr.Dataframe(
value=None,
headers=None,
interactive=False,
wrap=True,
row_count=(0, "dynamic"),
col_count=(0, "dynamic"),
label="Distances"
)
gr.Markdown("### Distance Matrix (Heatmap)")
heatmap = gr.Image(type="numpy", interactive=False)
run_btn.click(
fn=run_compute,
inputs=[
framework, distance_mode, label_aware, label_weighting, label_max_per_class,
num_projections, n_eval_per_dataset, demo_task, demo_select, uploads,
umap_mode, umap_n_components, umap_n_neighbors, umap_min_dist, umap_metric,
umap_spread, umap_learning_rate, umap_n_epochs, umap_negative_sample_rate,
umap_init, umap_densmap, umap_set_op_mix_ratio, umap_local_connectivity,
umap_repulsion_strength, umap_random_state, channel_representation, angle_delay_bins
],
outputs=[status, matrix_out, heatmap]
)
if __name__ == "__main__":
demo.launch()
|