File size: 16,835 Bytes
f0949fa
cd5b954
f0949fa
cd5b954
f0949fa
c5f5103
 
 
 
f0949fa
 
 
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6177bf
 
 
 
cd5b954
4410a6f
d854d43
4410a6f
 
 
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
c7df97b
 
 
4410a6f
c7df97b
 
d854d43
c7df97b
 
 
cd5b954
 
 
c7df97b
 
 
 
cd5b954
c7df97b
 
 
 
 
 
 
 
cd5b954
c5f5103
 
cd5b954
c5f5103
 
 
 
 
cd5b954
c5f5103
cd5b954
 
c6177bf
cd5b954
 
 
c6177bf
f0949fa
cd5b954
 
 
 
f0949fa
cd5b954
 
f0949fa
cd5b954
 
f0949fa
c6177bf
cd5b954
 
c6177bf
 
cd5b954
 
f0949fa
 
cd5b954
 
 
 
f0949fa
 
cd5b954
 
f0949fa
cd5b954
 
 
f0949fa
cd5b954
 
 
f0949fa
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0949fa
cd5b954
f0949fa
cd5b954
f0949fa
 
 
 
cd5b954
f0949fa
cd5b954
 
 
 
 
 
 
f0949fa
cd5b954
 
 
 
 
 
 
 
f0949fa
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
c6177bf
cd5b954
c6177bf
 
cd5b954
 
 
f0949fa
 
 
 
 
cd5b954
 
 
 
c6177bf
f0949fa
 
 
 
cd5b954
 
 
 
 
 
 
 
 
 
 
f0949fa
cd5b954
f0949fa
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6177bf
 
 
cd5b954
c6177bf
 
cd5b954
c6177bf
cd5b954
c6177bf
 
 
 
 
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4410a6f
 
 
 
 
 
 
 
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7729549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5b954
 
 
 
 
 
 
 
f0949fa
cd5b954
 
 
 
f0949fa
cd5b954
 
 
 
 
f0949fa
cd5b954
 
 
f0949fa
cd5b954
 
 
 
f0949fa
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0949fa
cd5b954
 
 
 
f0949fa
cd5b954
 
 
 
 
 
 
 
 
 
 
f0949fa
cd5b954
 
 
 
 
f0949fa
cd5b954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0949fa
cd5b954
 
 
 
 
 
f0949fa
cd5b954
f0949fa
 
 
c5f5103
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import os
import sys
import json
from typing import List, Tuple, Optional, Dict

# Use a non-GUI backend for Matplotlib
import matplotlib
matplotlib.use("Agg")

import numpy as np
import torch
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd

from io_demo import (
    list_demo_tasks, list_demo_dataset_files, load_pt_dataset,
)
from distances_common import (
    pairwise_centroid_distances,
    pairwise_cosine_similarity_distances,
    sliced_wasserstein_distance_matrix,
)
from embed_raw import build_raw_embeddings
from embed_umap import build_umap_embeddings
from embed_lwm import get_lwm_encoder, build_lwm_embeddings


# ------------------------
# Small helpers / logging
# ------------------------

def _log(msg: str):
    print(msg, flush=True)


def _matrix_payload(np_mat: np.ndarray, labels: Optional[List[str]] = None):
    """
    Return a safe gr.update payload for a Dataframe (headers must match col_count).
    """
    df = pd.DataFrame(np_mat)
    # Format values to always show 3 decimal places
    df = df.round(3)
    # Format each value to show exactly 3 decimal places
    for col in df.columns:
        df[col] = df[col].apply(lambda x: f"{x:.3f}")
    if labels is not None and len(labels) == df.shape[0]:
        df.index = labels
    if labels is not None and len(labels) == df.shape[1]:
        df.columns = labels
    return gr.update(
        value=df,
        headers=list(df.columns),
        col_count=(df.shape[1], "fixed"),
        row_count=(df.shape[0], "fixed")
    )


def _plot_heatmap(D: np.ndarray, labels: Optional[List[str]] = None) -> np.ndarray:
    """Return an RGB image (as numpy array) of the heatmap."""
    # Set dark mode style
    plt.style.use('dark_background')
    
    fig, ax = plt.subplots(figsize=(6, 5), dpi=200, facecolor='#1e1e1e')
    ax.set_facecolor('#1e1e1e')
    
    im = ax.imshow(D, cmap="magma")
    cbar = plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
    cbar.ax.tick_params(colors='white')  # Light colorbar labels
    
    if labels and len(labels) == D.shape[0]:
        ax.set_xticks(np.arange(len(labels)))
        ax.set_yticks(np.arange(len(labels)))
        ax.set_xticklabels(labels, rotation=60, ha="right", fontsize=8, color='white')
        ax.set_yticklabels(labels, fontsize=8, color='white')
    
    ax.set_title("Dataset Distance Matrix", color='white')
    ax.grid(False)
    
    # Set axis colors to light
    ax.spines['bottom'].set_color('white')
    ax.spines['top'].set_color('white')
    ax.spines['right'].set_color('white')
    ax.spines['left'].set_color('white')
    ax.tick_params(colors='white', which='both')
    
    fig.tight_layout()

    # Render and grab RGBA buffer (works across Matplotlib versions)
    fig.canvas.draw()
    width, height = fig.canvas.get_width_height()
    buf = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
    img_rgba = buf.reshape((height, width, 4))
    img_rgb = img_rgba[..., :3].copy()

    plt.close(fig)
    return img_rgb


def _load_uploaded_files(file_objs: List) -> List[Tuple[torch.Tensor, Optional[torch.Tensor], str]]:
    """Load uploaded datasets. Expect torch files with keys: 'channels', 'labels' (optional)."""
    out = []
    for f in (file_objs or []):
        path = getattr(f, "name", f)
        try:
            obj = torch.load(path, map_location="cpu")
            ch = obj["channels"]
            y = obj.get("labels", None)
            out.append((ch, y, os.path.basename(path)))
        except Exception as e:
            _log(f"[WARN] Failed to load {path}: {e}")
    return out


def _load_demo_files(paths: List[str]) -> List[Tuple[torch.Tensor, Optional[torch.Tensor], str]]:
    out = []
    for p in paths or []:
        try:
            ch, y = load_pt_dataset(p)
            # scenario folder name as label
            out.append((ch, y, os.path.basename(os.path.dirname(p))))
        except Exception as e:
            _log(f"[WARN] Failed to load demo dataset {p}: {e}")
    return out


def _compute_embeddings(
    framework: str,
    datasets: List[Tuple[torch.Tensor, Optional[torch.Tensor], str]],
    n_per_dataset: int,
    label_aware: bool,
    umap_cfg: Dict
):
    """
    Returns:
      embs: torch.Tensor [D, n, d]
      labels_per_ds: Optional[List[torch.Tensor]]
    """
    if framework == "RAW":
        embs, labels_per_ds = build_raw_embeddings(datasets, n_per_dataset, label_aware)
        return embs, labels_per_ds

    if framework == "UMAP":
        embs, labels_per_ds = build_umap_embeddings(
            datasets=datasets,
            n_per_dataset=n_per_dataset,
            label_aware=label_aware,
            umap_mode=umap_cfg.get("mode", "supervised"),
            umap_kwargs=umap_cfg.get("kwargs", {}),
            channel_representation=umap_cfg.get("repr", "raw"),
            angle_delay_bins=int(umap_cfg.get("angle_delay_bins", 16)),
        )
        return embs, labels_per_ds

    if framework == "LWM":
        model = get_lwm_encoder()
        if model is None:
            _log("[WARN] LWM encoder not available; falling back to RAW embeddings.")
            embs, labels_per_ds = build_raw_embeddings(datasets, n_per_dataset, label_aware)
        else:
            embs, labels_per_ds = build_lwm_embeddings(
                model=model,
                datasets=datasets,
                n_per_dataset=n_per_dataset,
                label_aware=label_aware
            )
        return embs, labels_per_ds

    raise ValueError(f"Unknown framework: {framework}")


def _compute_distance_matrix(
    embs: torch.Tensor,
    distance_mode: str,
    num_projections: int,
    label_aware: bool,
    labels_per_ds: Optional[List[torch.Tensor]],
    label_weighting: str,
    label_max_per_class: int
) -> torch.Tensor:
    """
    embs: [D, n, d]
    """
    if distance_mode == "euclidean_centroid" and not label_aware:
        cents = embs.mean(dim=1)  # [D, d]
        return pairwise_centroid_distances(cents)

    if distance_mode == "cosine_similarity" and not label_aware:
        cents = embs.mean(dim=1)  # [D, d]
        return pairwise_cosine_similarity_distances(cents)

    # Sliced Wasserstein (supports label-aware)
    return sliced_wasserstein_distance_matrix(
        embs,
        num_projections=num_projections,
        labels_per_ds=labels_per_ds,
        label_aware=label_aware,
        label_weighting=label_weighting,
        label_max_per_class=label_max_per_class
    )


# ------------------------
# Gradio callbacks
# ------------------------

def refresh_demo_tasks():
    tasks = list_demo_tasks()
    return gr.update(choices=tasks, value=(tasks[0] if tasks else None))


def refresh_demo_scenarios(task: str):
    if not task:
        return gr.update(choices=[], value=[])
    files = list_demo_dataset_files(task)
    default = files[:3] if len(files) >= 3 else files
    return gr.update(choices=files, value=default)


def run_compute(
    framework: str,
    distance_mode: str,
    label_aware: bool,
    label_weighting: str,
    label_max_per_class: int,
    num_projections: int,
    n_eval_per_dataset: int,
    demo_task: str,
    demo_files: List[str],
    uploaded_files: List,
    umap_mode: str,
    umap_n_components: int,
    umap_n_neighbors: int,
    umap_min_dist: float,
    umap_metric: str,
    umap_spread: float,
    umap_learning_rate: float,
    umap_n_epochs: int,
    umap_negative_sample_rate: int,
    umap_init: str,
    umap_densmap: bool,
    umap_set_op_mix_ratio: float,
    umap_local_connectivity: float,
    umap_repulsion_strength: float,
    umap_random_state: int,
    channel_representation: str,
    angle_delay_bins: int,
):
    datasets = []
    if demo_task and demo_files:
        datasets.extend(_load_demo_files(demo_files))
    datasets.extend(_load_uploaded_files(uploaded_files))

    if len(datasets) < 2:
        return (
            gr.update(value="Please provide at least 2 datasets (demo or upload)."),
            _matrix_payload(np.zeros((0, 0))),
            None
        )

    names = [name for _, _, name in datasets]

    umap_kwargs = dict(
        n_components=int(umap_n_components),
        n_neighbors=int(umap_n_neighbors),
        min_dist=float(umap_min_dist),
        metric=umap_metric,
        spread=float(umap_spread),
        learning_rate=float(umap_learning_rate),
        n_epochs=None if umap_n_epochs in [None, 0] else int(umap_n_epochs),
        negative_sample_rate=int(umap_negative_sample_rate),
        init=umap_init,
        densmap=bool(umap_densmap),
        set_op_mix_ratio=float(umap_set_op_mix_ratio),
        local_connectivity=float(umap_local_connectivity),
        repulsion_strength=float(umap_repulsion_strength),
        random_state=int(umap_random_state),
        target_metric="categorical",
        target_weight=0.5,
    )

    embs, labels_per_ds = _compute_embeddings(
        framework=framework,
        datasets=datasets,
        n_per_dataset=int(n_eval_per_dataset),
        label_aware=bool(label_aware),
        umap_cfg={
            "mode": umap_mode,
            "kwargs": umap_kwargs,
            "repr": channel_representation,
            "angle_delay_bins": int(angle_delay_bins),
        }
    )

    D = _compute_distance_matrix(
        embs=embs,
        distance_mode=distance_mode,
        num_projections=int(num_projections),
        label_aware=bool(label_aware),
        labels_per_ds=labels_per_ds,
        label_weighting=label_weighting,
        label_max_per_class=int(label_max_per_class),
    )
    D_np = D.detach().cpu().numpy()
    
    # Normalize distance matrix to [0, 1] range (min-max normalization)
    d_min = D_np.min()
    d_max = D_np.max()
    if d_max > d_min:  # Avoid division by zero
        D_np = (D_np - d_min) / (d_max - d_min)
    else:
        D_np = np.zeros_like(D_np)  # All values are the same, set to 0

    img = _plot_heatmap(D_np, labels=names)
    return (
        gr.update(value="Done βœ…"),
        _matrix_payload(D_np, labels=names),
        img
    )


# ------------------------
# UI
# ------------------------

with gr.Blocks(title="Dataset Distancing Lab") as demo:
    gr.Markdown(
        """
        # Dataset Distancing Lab
        Compute distances between datasets using **RAW**, **UMAP**, or **LWM** embeddings.  
        Upload your `.pt`/`.p` datasets or try the built-in samples under `data/{task}/{scenario}/...`.

        **Format:** each file should be a Torch file with keys:
        - `channels`: `Tensor[N, ...]` (complex supported; real+imag will be concatenated)
        - `labels` (optional): `Tensor[N]`
        """
    )
    
    with gr.Accordion("πŸ“š Citation", open=False):
        gr.Markdown(
            """
            If you use this lab or methods in your work, please cite:
            
            ```bibtex
            @INPROCEEDINGS{10942657,
            author={Morais, JoΓ£o and Alikhani, Sadjad and Malhotra, Akshay and Hamidi-Rad, Shahab and Alkhateeb, Ahmed},
            booktitle={2024 58th Asilomar Conference on Signals, Systems, and Computers}, 
            title={A Dataset Similarity Evaluation Framework for Wireless Communications and Sensing}, 
            year={2024},
            volume={},
            number={},
            pages={1144-1149},
            keywords={Wireless communication;Dimensionality reduction;Adaptation models;Wireless sensor networks;Nearest neighbor methods;Extraterrestrial measurements;Data structures;Distance measurement;Data models;Sensors},
            doi={10.1109/IEEECONF60004.2024.10942657}}
            ```
            """
        )

    with gr.Row():
        with gr.Column(scale=1, min_width=320):
            gr.Markdown("### Framework & Distance")
            framework = gr.Radio(
                choices=["RAW", "UMAP", "LWM"],
                value="RAW",
                label="Framework",
            )
            distance_mode = gr.Radio(
                choices=["sliced_wasserstein", "euclidean_centroid", "cosine_similarity"],
                value="sliced_wasserstein",
                label="Distance Mode"
            )
            label_aware = gr.Checkbox(value=True, label="Label-aware (supported by SW distance)")
            label_weighting = gr.Dropdown(
                choices=["uniform", "support"],
                value="uniform",
                label="Label weighting"
            )
            label_max_per_class = gr.Number(value=1e10, precision=0, label="Max samples / class")
            num_projections = gr.Slider(8, 256, value=64, step=1, label="SW #projections")
            n_eval_per_dataset = gr.Slider(32, 4096, value=1024, step=32, label="Samples per dataset")

            gr.Markdown("### UMAP (only if Framework=UMAP)")
            umap_mode = gr.Dropdown(["unsupervised", "supervised"], value="supervised", label="UMAP Mode")
            channel_representation = gr.Dropdown(["raw", "angle_delay"], value="raw", label="Channel representation")
            angle_delay_bins = gr.Slider(4, 128, value=16, step=1, label="Angle-delay bins (if used)")

            with gr.Accordion("Advanced UMAP settings", open=False):
                umap_n_components = gr.Slider(2, 256, value=128, step=1, label="n_components")
                umap_n_neighbors = gr.Slider(2, 128, value=32, step=1, label="n_neighbors")
                umap_min_dist = gr.Slider(0.0, 0.99, value=0.1, step=0.01, label="min_dist")
                umap_metric = gr.Dropdown(
                    ["euclidean", "cosine", "manhattan", "chebyshev", "correlation"],
                    value="euclidean", label="metric"
                )
                umap_spread = gr.Slider(0.1, 5.0, value=1.0, step=0.1, label="spread")
                umap_learning_rate = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="learning_rate")
                umap_n_epochs = gr.Number(value=0, precision=0, label="n_epochs (0 = auto)")
                umap_negative_sample_rate = gr.Slider(1, 50, value=5, step=1, label="negative_sample_rate")
                umap_init = gr.Dropdown(["spectral", "random"], value="spectral", label="init")
                umap_densmap = gr.Checkbox(value=False, label="densMAP")
                umap_set_op_mix_ratio = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="set_op_mix_ratio")
                umap_local_connectivity = gr.Slider(1.0, 10.0, value=1.0, step=0.5, label="local_connectivity")
                umap_repulsion_strength = gr.Slider(0.1, 5.0, value=1.0, step=0.1, label="repulsion_strength")
                umap_random_state = gr.Number(value=42, precision=0, label="random_state")

        with gr.Column(scale=1, min_width=320):
            gr.Markdown("### Demo datasets (data/{task}/{scenario}/...)")
            demo_task = gr.Dropdown(choices=[], value=None, label="Task", interactive=True)
            demo_select = gr.CheckboxGroup(choices=[], value=[], label="Scenarios (files inside each scenario)")

            refresh = gr.Button("πŸ”„ Refresh Demo Lists")
            refresh.click(
                fn=refresh_demo_tasks,
                inputs=[],
                outputs=[demo_task]
            )
            demo_task.change(
                fn=refresh_demo_scenarios,
                inputs=[demo_task],
                outputs=[demo_select]
            )

            gr.Markdown("### Or upload your own")
            uploads = gr.Files(
                label="Upload multiple .pt/.p datasets",
                file_count="multiple",
                file_types=[".pt", ".p"]
            )

            run_btn = gr.Button("πŸš€ Compute distances", variant="primary")
            status = gr.Markdown("")

        with gr.Column(scale=2):
            gr.Markdown("### Distance Matrix (Table)")
            matrix_out = gr.Dataframe(
                value=None,
                headers=None,
                interactive=False,
                wrap=True,
                row_count=(0, "dynamic"),
                col_count=(0, "dynamic"),
                label="Distances"
            )
            gr.Markdown("### Distance Matrix (Heatmap)")
            heatmap = gr.Image(type="numpy", interactive=False)

    run_btn.click(
        fn=run_compute,
        inputs=[
            framework, distance_mode, label_aware, label_weighting, label_max_per_class,
            num_projections, n_eval_per_dataset, demo_task, demo_select, uploads,
            umap_mode, umap_n_components, umap_n_neighbors, umap_min_dist, umap_metric,
            umap_spread, umap_learning_rate, umap_n_epochs, umap_negative_sample_rate,
            umap_init, umap_densmap, umap_set_op_mix_ratio, umap_local_connectivity,
            umap_repulsion_strength, umap_random_state, channel_representation, angle_delay_bins
        ],
        outputs=[status, matrix_out, heatmap]
    )

if __name__ == "__main__":
    demo.launch()