Tell_Me / fresh_app_v2.py
Anonymous
Initial anonymous commit
3fa63a4
import os
import sys
import io
import re
import time
import json
import base64
import random
import hashlib
from typing import Optional, List, Dict
from dotenv import load_dotenv
import streamlit as st
from llama_index.llms.langchain import LangChainLLM
try:
import torch
TORCH_OK = True
except Exception:
TORCH_OK = False
try:
from langchain_openai import ChatOpenAI
except Exception:
ChatOpenAI = None
try:
from langchain_anthropic import ChatAnthropic
except Exception:
ChatAnthropic = None
try:
from langchain_ollama.llms import OllamaLLM
OLLAMA_OK = True
except Exception:
OLLAMA_OK = False
try:
from huggingface_hub import HfApi
HFHUB_OK = True
except Exception:
HFHUB_OK = False
import llm_models as llm_models_file
import rag as rag
import crew_ai as crew_ai_file
st.set_page_config(
page_title="Tell Me — A Mental Well-Being Space",
page_icon="🌿",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
# optional polish
"About": "Tell Me is a safe space for individuals seeking some well-being advice or a self-reflection space. It also provides the research community to simulate some LLM generated client-therapist synthetic data. This is a research prototype, not medical device."
},
)
if TORCH_OK:
try:
torch.classes.__path__ = [os.path.join(torch.__path__[0], torch.classes.__file__)]
except Exception:
pass
load_dotenv()
# ---------------------------------------------------------------------
# MODES: "public" (default) vs "study"
# - public: one chat; visible RAG toggle
# - study: access gate + two-part blinded flow (rag vs nonrag) with per-part ratings
# Switchable via sidebar and URL query (?mode=public|study) or env MODE
# ---------------------------------------------------------------------
DEFAULT_MODE = (os.getenv("MODE", "public") or "public").strip().lower()
qs = st.query_params
mode_q = None
if isinstance(qs, dict) and "mode" in qs:
mode_q = qs.get("mode")
if isinstance(mode_q, list):
mode_q = mode_q[0] if mode_q else None
if mode_q:
DEFAULT_MODE = (mode_q or DEFAULT_MODE).strip().lower()
if "app_mode" not in st.session_state:
st.session_state.app_mode = DEFAULT_MODE if DEFAULT_MODE in {"public", "study"} else "public"
# Access control (only used in study mode)
ACCESS_CODE = os.getenv("ACCESS_CODE", "")
# logging controls
LOG_DATASET_REPO = os.getenv("LOG_DATASET_REPO")
HF_TOKEN = os.getenv("HF_TOKEN")
LOCAL_LOG_DIR = os.getenv("LOCAL_LOG_DIR", os.path.join("Results", "logs"))
ENABLE_LOGGING = bool(LOG_DATASET_REPO and HF_TOKEN and HFHUB_OK)
PREP_SPINNER_SECONDS = float(os.getenv("PREP_SPINNER_SECONDS", "1.2"))
# Stored Index Storage
RAG_INDEX_DIR = os.getenv("RAG_INDEX_DIR", "/data/index_storage")
# Theme CSS
def inject_ui_css():
st.markdown(
"""
<style>
:root{
--text:#e7eaf0; --muted:#9aa4b2; --card-bg:#0f172a;
--header-start:#0f1b2e; --header-end:#0b1324; --header-border:#1e2a44;
}
@media (prefers-color-scheme: light){
:root{
--text:#0f172a; --muted:#6b7280; --card-bg:#ffffff;
--header-start:#f4f8ff; --header-end:#f9fcff; --header-border:#e6eefc;
}
}
.stTabs [data-baseweb="tab"]{
font-size:1.12rem;
padding:10px 16px;
}
.stTabs [data-baseweb="tab"][aria-selected="true"]{
font-weight:700;
border-bottom:2px solid rgba(109,152,255,.6);
}
@media (max-width: 640px){
.stTabs [data-baseweb="tab"]{ font-size:1.0rem; padding:8px 12px; }
}
.header-card{
background:linear-gradient(135deg,var(--header-start) 0%,var(--header-end) 100%);
border:1px solid var(--header-border);
padding:18px 20px; border-radius:16px; margin-bottom:8px; color:var(--text);
box-shadow:0 8px 30px rgba(0,0,0,.08);
}
.header-title{
display:flex; flex-wrap:wrap; align-items:baseline; gap:.4rem;
font-size:1.9rem; line-height:1.2; font-weight:800; margin:0; color:var(--text);
letter-spacing:.2px;
}
.header-title .mini-pill{
display:block;
margin-top:10px;
margin-left:0;
width:fit-content;
}
.header-sub{ color:var(--muted); margin-top:10px; font-size:.98rem; }
.mini-pill{
display:inline-block; padding:4px 10px; border-radius:999px;
background:rgba(109,152,255,.12); border:1px solid rgba(109,152,255,.35);
color:#8fb0ff; font-size:.78rem; margin-left:8px;
backdrop-filter:saturate(140%) blur(6px);
}
.app-hero{
background:linear-gradient(135deg,var(--header-start) 0%,var(--header-end) 100%);
border:1px solid var(--header-border);
border-radius:16px;
padding:20px;
position:relative; overflow:hidden;
box-shadow:0 8px 30px rgba(0,0,0,.10);
}
.app-hero:after{
content:""; position:absolute; right:-60px; top:-60px; width:180px; height:180px;
background:radial-gradient(closest-side, rgba(109,152,255,.22), transparent 60%);
filter:blur(10px);
}
.app-title{ display:flex; align-items:baseline; gap:.35rem; font-weight:800; font-size:1.75rem; color:var(--text); letter-spacing:.2px; }
.app-title .mono{ font-weight:700; opacity:.9; font-size:1.1rem; }
.app-meta{ margin-top:8px; display:flex; flex-wrap:wrap; gap:8px; }
.badge{
font-size:.72rem; padding:4px 10px; border-radius:999px; border:1px solid;
backdrop-filter:saturate(140%) blur(6px);
}
.badge.study { background:rgba(252,211,77,.12); border-color:rgba(252,211,77,.35); color:#fcd34d; }
.badge.public { background:rgba(109,152,255,.12); border-color:rgba(109,152,255,.35); color:#8fb0ff; }
.badge.neutral{ background:rgba(148,163,184,.12); border-color:rgba(148,163,184,.35); color:#a8b2c1; }
.app-sub{ color:var(--muted); margin-top:8px; font-size:.98rem; }
.hairline{ height:1px; margin:10px 0 6px; background:linear-gradient(to right, transparent, rgba(148,163,184,.35), transparent); }
@media (max-width: 640px){
.app-title{ font-size:1.45rem; }
.app-sub{ font-size:.95rem; }
}
.card{
background:var(--card-bg);
border:1px solid rgba(237,240,247,.18);
border-radius:12px; padding:12px 14px; margin-bottom:10px;
box-shadow:0 1px 0 rgba(16,24,40,.02);
}
.stButton>button{ border-radius:10px; padding:8px 14px; }
.block-container{ padding-top:.6rem !important; padding-bottom:.6rem !important; }
header[data-testid="stHeader"]{ margin-bottom:0 !important; }
.stAlert{ margin-top:6px !important; margin-bottom:8px !important; padding:10px 12px !important; }
.header-card{ margin-top:0 !important; }
.chat-input{ box-shadow:0 -6px 18px rgba(0,0,0,.04); }
</style>
""",
unsafe_allow_html=True,
)
def header_bar():
mode = st.session_state.get("app_mode", "public")
mode_label = "Research Prototype (Study)" if mode == "study" else "Public Preview"
mode_class = "study" if mode == "study" else "public"
st.markdown(
f"""
<div class="header-card">
<div class="header-title">🌿 Tell Me — A Mental Well-Being Space</div>
<div class="header-meta">
<span class="mini-pill {mode_class}">{mode_label}</span>
<span class="mini-pill neutral">Calm · Private · Supportive</span>
</div>
<div class="header-sub">
Tell Me is a safe space for individuals seeking some well-being advice or a self-reflection space. It also provides the research community to simulate some LLM generated client-therapist synthetic data. This is a research prototype, not a medical device.
</div>
</div>
""",
unsafe_allow_html=True,
)
@st.cache_data()
def file_to_base64(path: str) -> str:
with open(path, "rb") as f:
return base64.b64encode(f.read()).decode()
def set_app_background(image_path: str):
try:
b64 = file_to_base64(image_path)
st.markdown(
f"""
<style>
.stApp {{
background: url("data:image/jpeg;base64,{b64}") no-repeat center center fixed;
background-size: cover;
}}
[data-testid="stAppViewContainer"] {{ background-color: transparent; }}
[data-testid="stHeader"] {{ background-color: rgba(0,0,0,0); }}
[data-testid="stToolbar"] {{ right: 0; }}
</style>
""",
unsafe_allow_html=True,
)
except Exception as e:
print("Background image failed:", e)
# Blindfolded ordering for 2 part study
def assign_order(pid: Optional[str]) -> List[str]:
"""Blinded condition order from a participant id.
Returns ["rag","nonrag"] or ["nonrag","rag"].
"""
force = os.getenv("FORCE_ORDER")
if force in ("AB", "BA"):
return ["rag", "nonrag"] if force == "AB" else ["nonrag", "rag"]
if pid:
h = int(hashlib.sha256(pid.encode()).hexdigest(), 16)
return ["rag", "nonrag"] if (h % 2) == 0 else ["nonrag", "rag"]
return random.choice([["rag", "nonrag"], ["nonrag", "rag"]])
_SANITIZERS = [
(r"\s*\[\d+(?:,\s*\d+)*\]", ""),
(r"\(?(?:Source|source)\s*:\s*[^)\n]+?\)?", ""),
(r"https?://\S+", ""),
]
def sanitize(text: str) -> str:
for pat, repl in _SANITIZERS:
text = re.sub(pat, repl, text)
return text.strip()
def as_text(x):
if hasattr(x, "response"):
return str(x.response)
try:
from langchain_core.messages import BaseMessage
if isinstance(x, BaseMessage):
return x.content
except Exception:
pass
if isinstance(x, dict):
return x.get("text") or x.get("content") or str(x)
return str(x)
# Optional HF API for study logging
_hf_api = HfApi() if ENABLE_LOGGING else None
def _write_local_log(row: dict):
ts = row.get("ts", int(time.time()))
date_dir = time.strftime("%Y-%m-%d", time.gmtime(ts))
part = row.get("participant_id", "anon") or "anon"
folder = os.path.join(LOCAL_LOG_DIR, date_dir)
os.makedirs(folder, exist_ok=True)
fname = os.path.join(folder, f"{part}_{ts}.json")
with open(fname, "w", encoding="utf-8") as f:
json.dump(row, f, ensure_ascii=False, separators=(",", ":"))
print(f"[local-log] wrote {fname}")
def _upload_log(row: dict):
assert ENABLE_LOGGING and _hf_api, "Logging is disabled"
try:
_hf_api.create_repo(repo_id=LOG_DATASET_REPO, repo_type="dataset", private=True, token=HF_TOKEN)
except Exception:
pass
date_dir = time.strftime("%Y-%m-%d", time.gmtime(row.get("ts", int(time.time()))))
fname = f"logs/{date_dir}/{row.get('participant_id','anon')}_{row['ts']}.json"
payload = json.dumps(row, ensure_ascii=False, separators=(",", ":")).encode("utf-8")
_hf_api.upload_file(
path_or_fileobj=io.BytesIO(payload),
path_in_repo=fname,
repo_id=LOG_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN,
)
def safe_upload_log(row: dict):
if st.session_state.app_mode != "study":
return
_write_local_log(row)
if ENABLE_LOGGING:
_upload_log(row)
def reset_chat_state(reason: str = ""):
"""Clear all chat-related state so a new provider/key starts fresh."""
ss = st.session_state
# public
ss.history = []
ss.chat_input = ""
# study
for k in ["history_p1", "history_p2", "chat_input_p1", "chat_input_p2",
"ratings_p1", "ratings_p2", "study_part_index", "study_order"]:
ss.pop(k, None)
ss.chat_engine_rag = None
for k in ["sentiment_chain", "ai_usage_collected", "ai_usage"]:
ss.pop(k, None)
def ensure_active_auth_signature(provider: str, key: Optional[str]) -> None:
"""If (provider, key) changed since last active model, reset the chat state.
Stores a hash (not the raw key) in session_state["auth_sig_active"].
"""
key = key or ""
new_sig = hashlib.sha256(f"{provider}|{key}".encode("utf-8")).hexdigest()
prev_sig = st.session_state.get("auth_sig_active")
if prev_sig is None:
st.session_state.auth_sig_active = new_sig
return
if new_sig != prev_sig:
reset_chat_state("auth changed")
st.session_state.auth_sig_active = new_sig
try:
st.toast("🔑 Provider/API key changed — chat reset.")
except Exception:
pass
def select_backend_and_model():
"""Sidebar controls for provider + API key. Returns a chat model.
Manual key overrides env; when a *usable* (provider,key) pair changes,
we reset the session state and start fresh.
"""
with st.sidebar:
st.markdown("### 🔧 Model Backend")
provider = st.selectbox(
"Choose a provider",
[
"OpenAI (GPT-4o)",
"Anthropic (Claude 3.7 Sonnet)",
*( ["Ollama (local)"] if OLLAMA_OK else [] ),
],
help="Paste a key below for cloud providers. Ollama requires the runtime.",
)
typed_key = None
effective_key = None
if provider.startswith("OpenAI"):
# Prefer manual entry; fallback to env
typed_key = st.text_input("OpenAI API Key", type="password", placeholder="sk-...",
help="Used only in your session; not logged.")
effective_key = typed_key or os.getenv("OPENAI_API_KEY")
if not effective_key:
st.warning("Enter your OpenAI API key or set OPENAI_API_KEY.")
return None
# Detect change and reset before creating model
ensure_active_auth_signature("openai", effective_key)
if ChatOpenAI is None:
st.error("LangChain OpenAI chat wrapper not available.")
return None
return ChatOpenAI(model="gpt-4o", temperature=0.7, api_key=effective_key)
if provider.startswith("Anthropic"):
typed_key = st.text_input("Anthropic API Key", type="password", placeholder="sk-ant-...",
help="Used only in your session; not logged.")
effective_key = typed_key or os.getenv("ANTHROPIC_API_KEY")
if not effective_key:
st.warning("Enter your Anthropic API key or set ANTHROPIC_API_KEY.")
return None
ensure_active_auth_signature("anthropic", effective_key)
if ChatAnthropic is None:
st.error("LangChain Anthropic chat wrapper not available.")
return None
return ChatAnthropic(model="claude-3-7-sonnet-latest", api_key=effective_key)
if provider.startswith("Ollama"):
if not OLLAMA_OK:
st.error("Ollama is not available in this environment.")
return None
# Let the user choose which local Ollama model to run
ollama_model_options = [
"llama3",
"mistral:7b",
"gemma3",
"phi4-mini:3.8b",
"vitorcalvi/mentallama2:latest",
"wmb/llamasupport",
"ALIENTELLIGENCE/mentalwellness",
]
selected_model = st.selectbox(
"Ollama model",
ollama_model_options,
index=0,
help="Choose which local Ollama model to use (must be installed with ollama).",
)
ensure_active_auth_signature("ollama", f"local|{selected_model}")
base_url = os.getenv("OLLAMA_HOST", "http://127.0.0.1:11434")
return OllamaLLM(model=selected_model, base_url=base_url)
return None
def nonrag_reply(user_text: str, history: List[Dict[str, str]], model) -> str:
style_prompt = (
"You are a supportive, clear, non-clinical assistant. "
"Answer in 4–6 sentences, be empathetic, avoid clinical claims."
)
hist_txt = "\n".join(f"{m['role'].capitalize()}: {m['message']}" for m in history[-4:])
prompt = f"{style_prompt}\n\n{hist_txt}\nUser: {user_text}"
out = model.invoke(prompt)
return as_text(out)
@st.cache_resource(show_spinner=False)
def get_rag_engine(model_id: str):
return rag.create_chat_engine(model_id)
# Set background image
set_app_background("bg.jpg")
inject_ui_css()
# Sidebar: mode toggle + basic settings
with st.sidebar:
st.markdown("### 🌟 Mode")
st.session_state.app_mode = st.radio(
"Choose app mode",
["public", "study"],
index=0 if st.session_state.app_mode == "public" else 1,
help="Public removes consent + ratings; Study keeps them."
)
st.markdown("---")
if st.session_state.app_mode == "public":
rag_on = st.toggle("Use RAG retrieval", value=True, help="Turn off to see pure LLM responses.")
else:
# Hide the toggle in study mode
rag_on = (os.getenv("RAG_IN_STUDY", "on").strip().lower() != "off")
header_bar()
st.info(
"This is an educational prototype. It’s **not** medical/professional advice. "
"If you need help, contact a professional or a local crisis line."
)
# Study-only gate (access code + consent)
if st.session_state.app_mode == "study":
if ACCESS_CODE:
st.write("This demo is access-restricted (study mode).")
code = st.text_input("Enter access code to continue", type="password")
if code.strip() != ACCESS_CODE:
st.stop()
# Select backend + (optional) paste API key
model_obj = select_backend_and_model()
# Session state inits
ss = st.session_state
ss.setdefault("history", [])
ss.setdefault("participant_id", ss.get("participant_id", ""))
ss.setdefault("study_order", [])
ss.setdefault("study_part_index", None)
# Calling the RAG based ChatEngine
if st.session_state.app_mode == "public" and rag_on and model_obj is not None and ss.get("chat_engine_rag") is None:
wrapped = LangChainLLM(llm=model_obj)
ss.chat_engine_rag = rag.create_chat_engine(wrapped)
def render_chat_messages(msgs: List[Dict[str, str]]):
for message in msgs:
if message['role'] == 'user':
st.markdown(
f"<div style='text-align:left;padding:8px;margin:5px;background-color:#DCF8C6;border-radius:12px;display:inline-block;max-width:80%;color:black;'>{message['message']}</div>",
unsafe_allow_html=True,
)
else:
st.markdown(
f"<div style='text-align:left;padding:8px;margin:5px;background-color:#E6E6E6;border-radius:12px;display:inline-block;max-width:80%;color:black;'>{message['message']}</div>",
unsafe_allow_html=True,
)
def render_part(part_idx: int, use_rag: bool, model_obj):
part_name = "Part 1" if part_idx == 0 else "Part 2"
hist_key = "history_p1" if part_idx == 0 else "history_p2"
input_key = "chat_input_p1" if part_idx == 0 else "chat_input_p2"
send_key = f"btn_send_p{part_idx+1}"
clear_key = f"btn_clear_p{part_idx+1}"
dl_key = f"btn_dl_p{part_idx+1}"
st.subheader(f"{part_name} of 2")
st.caption("Please chat naturally. When you're done, submit the quick ratings below to continue.")
ss.setdefault(hist_key, [])
history = ss[hist_key]
render_chat_messages(history)
user_msg = st.text_area("Your message…", key=input_key, height=100)
can_send = bool(user_msg.strip()) and (model_obj is not None)
send_clicked = st.button("Send", type="primary", disabled=not can_send, key=send_key)
if st.button("🗑 Clear", key=clear_key):
ss[hist_key] = []
st.rerun()
if send_clicked:
history.append({"role": "user", "message": user_msg})
# Build RAG engine on demand
if use_rag and ss.get("chat_engine_rag") is None and model_obj is not None:
wrapped = LangChainLLM(llm=model_obj)
ss.chat_engine_rag = rag.create_chat_engine(wrapped)
# Sentiment guard
if "sentiment_chain" not in ss and model_obj is not None:
ss.sentiment_chain = llm_models_file.Sentiment_chain(model_obj)
result = ss.sentiment_chain.invoke({"client_response": user_msg}) if model_obj else {"text": ""}
last_sentiment = (result or {}).get("text", "—")
if any(word in last_sentiment.lower() for word in ["suicidal", "dangerous"]):
response = (
"I'm really sorry you're feeling this way, but I cannot provide the help you need. "
"Please reach out to a mental health professional or contact a crisis hotline immediately."
)
else:
if use_rag and ss.get("chat_engine_rag") is not None:
raw = ss.chat_engine_rag.chat(user_msg)
else:
raw = nonrag_reply(user_msg, history, model_obj)
response = sanitize(as_text(raw))
history.append({"role": "bot", "message": response})
st.rerun()
chat_text = "".join(
f"User: {m['message']}\n\n" if m['role'] == "user" else f"Bot: {m['message']}\n\n" for m in history
)
st.download_button("📥 Download This Part", data=chat_text, file_name=f"tellme_{part_name.lower().replace(' ', '_')}.txt", mime="text/plain", key=dl_key)
st.markdown("---")
st.markdown(f"### Quick ratings for {part_name} (1 = Low, 5 = High)")
metric_help = {
"helpful": "How much this response helped you make progress on what you needed right now.",
"supportive": "How caring, respectful, and non-judgmental the tone felt.",
"clarity": "How easy it was to understand; clear, organized, free of jargon.",
"grounded": "How well it stayed factual/relevant to your messages (no made-up details).",
"overall": "Your overall impression of this chat in this part."
}
c1, c2, c3, c4, c5 = st.columns(5)
with c1: helpful = st.slider("Helpfulness", 1, 5, 3, key=f"rate_helpful_p{part_idx+1}", help=metric_help["helpful"])
with c2: supportive = st.slider("Supportive", 1, 5, 3, key=f"rate_supportive_p{part_idx+1}", help=metric_help["supportive"])
with c3: clarity = st.slider("Clarity", 1, 5, 3, key=f"rate_clarity_p{part_idx+1}", help=metric_help["clarity"])
with c4: grounded = st.slider("Groundedness", 1, 5, 3, key=f"rate_grounded_p{part_idx+1}", help=metric_help["grounded"])
with c5: overall = st.slider("Overall", 1, 5, 3, key=f"rate_overall_p{part_idx+1}", help=metric_help["overall"])
comments = st.text_area("Optional comments", key=f"rate_comments_p{part_idx+1}")
save_label = "Save rating & Next → Part 2" if part_idx == 0 else "Save rating & Finish Study"
if st.button(save_label, key=f"btn_save_rating_p{part_idx+1}"):
ss[f"ratings_p{part_idx+1}"] = {
"helpful": helpful,
"supportive": supportive,
"clarity": clarity,
"grounded": grounded,
"overall": overall,
"comments": comments,
"num_turns": sum(1 for m in history if m["role"] == "user"),
"condition": "rag" if use_rag else "nonrag",
}
if part_idx == 0:
ss.study_part_index = 1
st.rerun()
else:
ss.study_part_index = 2
st.rerun()
def render_study_summary():
st.success("Thank you! Both parts are complete.")
st.markdown("---")
row = {
"ts": int(time.time()),
"participant_id": st.session_state.get("participant_id",""),
"order": st.session_state.get("study_order", []),
"part1": st.session_state.get("ratings_p1", {}),
"part2": st.session_state.get("ratings_p2", {}),
}
try:
safe_upload_log(row)
st.download_button(
"⬇️ Download anonymized study record (JSON)",
data=json.dumps(row, ensure_ascii=False, indent=2),
file_name=f"tellme_study_{row['ts']}.json",
mime="application/json",
key="btn_dl_study_json_final",
)
except Exception as e:
st.error(f"Logging failed: {e}")
tab_chat, tab_sim, tab_plan = st.tabs([
"💬 Chat with an Assistant",
"🧪 Simulate a Conversation",
"📅 Well-being Planner",
])
with tab_chat:
if st.session_state.app_mode == "public":
st.title("Tell Me Assistant ✨💬")
with st.expander("ℹ️ About the Tell Me assistant"):
st.markdown("""
**What it is**
- Tell Me Assistant is a Mental Well-being Chatbot designed to help individuals process their thoughts and emotions in a supportive way.
- It is not a substitute for professional care, but it offers a safe space for conversation and self-reflection.
- The Assistant is created with care, recognizing that people may turn to it during moments of initial support. Its goal is to make such therapeutic-style interactions more accessible and approachable for everyone.
**How it works**
- Uses your selected **Model Backend** (sidebar). API keys are kept in your session.
- Responses are short, clear, and empathetic. No diagnosis or medical advice.
**Mode specifics**
""")
mode = st.session_state.get("app_mode", "public")
if mode == "public":
st.markdown("- **Public Preview**: You can toggle **Use RAG retrieval** in the sidebar for more grounded answers.")
else:
st.markdown("- **Research Prototype (Study)**: Retrieval settings are blinded; quick ratings appear after your chat.")
st.markdown("""
**How to use**
1. Type what’s on your mind or what you need help with.
2. Click **Send**. Use **Clear Chat** to start fresh; **Download Chat** saves a transcript.
3. (Optional) Switch models in the sidebar; changing provider/key resets the chat to keep things clean.
**Good things to try**
""")
st.code(
"I’m feeling overwhelmed this week. Help me plan a gentle, 3-step routine and one 2-minute breathing exercise.",
language="text"
)
st.code(
"Give me three compassionate reframes for: “I’m behind and I’ll never catch up.”",
language="text"
)
st.code(
"I tend to ruminate at night. Can you suggest a short wind-down script I can read to myself?",
language="text"
)
st.markdown("""
**Safety & privacy**
- This assistant can’t handle emergencies. If you’re in crisis, please contact local emergency services or a crisis hotline.
- In **study mode**, anonymized ratings (and, if enabled by the host, logs) may be collected for research.
""")
render_chat_messages(ss.history)
user_msg = st.text_area("Your message…", key="chat_input", height=100)
can_send = bool(user_msg.strip()) and (model_obj is not None)
send_clicked = st.button("Send", type="primary", disabled=not can_send, key="btn_send_public")
if st.button("🗑 Clear Chat", key="btn_clear_public"):
ss.history = []
st.rerun()
if send_clicked:
ss.history.append({"role": "user", "message": user_msg})
if "sentiment_chain" not in ss and model_obj is not None:
ss.sentiment_chain = llm_models_file.Sentiment_chain(model_obj)
result = ss.sentiment_chain.invoke({"client_response": user_msg}) if model_obj else {"text": ""}
last_sentiment = (result or {}).get("text", "—")
if any(word in last_sentiment.lower() for word in ["suicidal", "dangerous"]):
response = (
"I'm really sorry you're feeling this way, but I cannot provide the help you need. "
"Please reach out to a mental health professional or contact a crisis hotline immediately."
)
else:
if rag_on and ss.get("chat_engine_rag") is not None:
raw = ss.chat_engine_rag.chat(user_msg)
else:
raw = nonrag_reply(user_msg, ss.history, model_obj)
response = sanitize(as_text(raw))
ss.history.append({"role": "bot", "message": response})
st.rerun()
# Download transcript
chat_text = "".join(
f"User: {m['message']}\n\n" if m['role'] == "user" else f"Bot: {m['message']}\n\n" for m in ss.history
)
st.download_button("📥 Download Chat", data=chat_text, file_name="tellme_chat.txt",
mime="text/plain", key="btn_dl_public")
else: # STUDY MODE — two-part blinded flow with per-part ratings
st.title("Tell Me Assistant ✨💬")
# Quick check-in (kept from original)
if "ai_usage_collected" not in ss:
st.markdown("#### Quick check-in before we start")
with st.form("ai_usage_form", clear_on_submit=True):
used_ai = st.radio(
"Have you ever used AI to process or reflect on your emotions?",
options=["Yes", "No", "Prefer not to say"], index=2,
)
details = st.text_input("If yes, which tools or how often? (optional)")
proceed = st.form_submit_button("Continue")
if proceed:
ss.ai_usage_collected = True
ss.ai_usage = {"used_ai_for_emotions": used_ai, "details": details.strip()}
st.success("Thanks! You can begin now.")
st.rerun()
st.stop()
# Participant code + blinded order
if ss.study_part_index is None:
with st.form("study_intro_form", clear_on_submit=True):
st.write("To preserve anonymity, you may enter a **Participant Code** (optional). This only controls the order of the two chats.")
pid = st.text_input("Participant Code (optional)", value=ss.get("participant_id", ""))
start = st.form_submit_button("Start Part 1")
if start:
ss.participant_id = pid.strip()
ss.study_order = assign_order(ss.participant_id)
ss.study_part_index = 0
ss.history_p1, ss.history_p2 = [], []
st.rerun()
st.stop()
idx = ss.get("study_part_index")
order = ss.get("study_order", [])
if isinstance(idx, int) and idx >= 2:
render_study_summary()
st.stop()
if not order:
ss.study_order = assign_order(ss.get("participant_id",""))
order = ss.study_order
if idx is None:
idx = 0
else:
idx = 0 if idx < 0 else 1 if idx > 1 else idx
use_rag = (order[idx] == "rag")
render_part(idx, use_rag, model_obj)
with tab_sim:
st.title("Simulate a Conversation 🧪🤖")
with st.expander("ℹ️ What is this tab?"):
st.write(
"This generates a **synthetic client–therapist conversation** from a short client profile. "
"It helps create sample data for research and lets professionals inspect the dialogue quality. "
"Outputs are created by an LLM and can guide future fine-tuning or evaluation."
)
st.markdown("**How to use**")
st.markdown(
"1) Write a brief persona in *Client Profile* (context, concerns, goals).\n"
"2) Click **Send** to generate a multi-turn dialogue.\n"
"3) Review the output and optionally **Download Transcript**."
)
st.markdown("**Example client profile**")
st.code(
"Age 24 student; recently moved cities. Feeling isolated and anxious about coursework. "
"Sleep is irregular; tends to ruminate at night. Wants to build routines and reduce worry.",
language="text",
)
client_profile = st.text_area(
"Client Profile",
key="simulate_chat",
height=120,
help="Describe the persona: context, concerns, coping, goals.",
)
gen_clicked = st.button("Generate Synthetic Dialogue", key="btn_sim_generate")
if gen_clicked:
if model_obj is None:
st.error("Choose a backend and provide a key first.")
else:
# Build role-specific prompts
client_prompt = llm_models_file.create_client_prompt(model_obj, client_profile)
therapist_prompt = llm_models_file.create_therapist_prompt(model_obj, client_profile)
chain_t = llm_models_file.Therapist_LLM_Model(therapist_prompt, model_obj)
chain_c = llm_models_file.Simulated_Client(client_prompt, model_obj)
# Run sim and render
sim_hist = llm_models_file.simulate_conversation(chain_t, chain_c)
for line in sim_hist:
st.write(line)
st.download_button(
"📥 Download Transcript",
data="\n\n".join(sim_hist),
file_name="chat_history_simulator.txt",
key="btn_sim_download",
)
with tab_plan:
st.title("Well-being Planner 📅🧘")
with st.expander("ℹ️ What is this tab?"):
st.write(
"Upload a **client–therapist chat transcript (.txt)** and the agents (via CrewAI) will:\n"
"- Analyze emotions & key concerns\n"
"- Create a **7-day well-being plan** (e.g., CBT techniques, routines)\n"
"- Generate a **guided meditation MP3** tailored to the transcript\n\n"
"This is for research/education; it’s not medical advice."
)
st.markdown("**How to use**")
st.markdown(
"1) Paste your **OpenAI API key** below (used only for this run).\n"
"2) Upload one **.txt** transcript (plain text).\n"
"3) Click **Create Plan & Meditation**."
)
st.caption("Tip: Avoid personal identifiers in uploaded text.")
crew_key = st.text_input("OpenAI API key (for this planner only)", type="password", key="crew_ai_openai_key")
up = st.file_uploader(
"Upload a .txt transcript",
type=["txt"],
key="planner_upload",
help="Plain text only.",
)
plan_clicked = st.button(
"Create Plan & Meditation",
key="btn_plan_create",
disabled=not (crew_key and up)
)
if plan_clicked:
if not crew_key:
st.error("Please provide your OpenAI API key.")
elif not up:
st.error("Please upload a .txt file first.")
else:
text_list = [line.strip() for line in up.read().decode("utf-8").split("\n") if line.strip()]
result = crew_ai_file.task_agent_pipeline(
text_list,
openai_api_key=crew_key
)
st.subheader("📌 Transcript Summary")
st.markdown(result.get("summary") or "_No summary returned._")
st.subheader("📅 7-Day Well-being Plan")
st.markdown(result.get("plan") or "_No plan returned._")
st.subheader("🧘 Guided Meditation (Text)")
st.markdown(result.get("meditation") or "_No meditation text returned._")
try:
with open("guided_meditation.mp3", "rb") as audio_file:
st.audio(audio_file.read(), format="audio/mp3")
except FileNotFoundError:
st.info("Meditation audio not found.")