Spaces:
Runtime error
Runtime error
Commit
Β·
ee0e82a
1
Parent(s):
f0dbcbc
Update
Browse files- app.py +16 -10
- receipts_app.py +2 -8
app.py
CHANGED
|
@@ -11,26 +11,29 @@ from PIL import Image
|
|
| 11 |
|
| 12 |
from donut import DonutModel
|
| 13 |
|
|
|
|
| 14 |
def demo_process(input_img):
|
| 15 |
global pretrained_model, task_prompt, task_name
|
| 16 |
# input_img = Image.fromarray(input_img)
|
| 17 |
-
output = pretrained_model.inference(image=input_img, prompt=task_prompt)[
|
|
|
|
|
|
|
| 18 |
return output
|
| 19 |
|
| 20 |
-
task_prompt = f"<s_cord-v2>"
|
| 21 |
|
| 22 |
-
|
| 23 |
-
# image.save("cord_sample_receipt1.png")
|
| 24 |
-
# image = Image.open("./sample_image_cord_test_receipt_00012.png")
|
| 25 |
-
# image.save("cord_sample_receipt2.png")
|
| 26 |
|
| 27 |
-
pretrained_model = DonutModel.from_pretrained(
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
pretrained_model.eval()
|
| 30 |
|
| 31 |
demo = gr.Interface(
|
| 32 |
fn=demo_process,
|
| 33 |
-
inputs=
|
| 34 |
outputs="json",
|
| 35 |
title=f"Donut π© demonstration for `cord-v2` task",
|
| 36 |
description="""This model is trained with 800 Indonesian receipt images of CORD dataset. <br>
|
|
@@ -40,7 +43,10 @@ More CORD receipt images are available at https://huggingface.co/datasets/naver-
|
|
| 40 |
More details are available at:
|
| 41 |
- Paper: https://arxiv.org/abs/2111.15664
|
| 42 |
- GitHub: https://github.com/clovaai/donut""",
|
| 43 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
| 44 |
cache_examples=False,
|
| 45 |
)
|
| 46 |
|
|
|
|
| 11 |
|
| 12 |
from donut import DonutModel
|
| 13 |
|
| 14 |
+
|
| 15 |
def demo_process(input_img):
|
| 16 |
global pretrained_model, task_prompt, task_name
|
| 17 |
# input_img = Image.fromarray(input_img)
|
| 18 |
+
output = pretrained_model.inference(image=input_img, prompt=task_prompt)[
|
| 19 |
+
"predictions"
|
| 20 |
+
][0]
|
| 21 |
return output
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
+
task_prompt = f"<s_cord-v2>"
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
pretrained_model = DonutModel.from_pretrained(
|
| 27 |
+
"naver-clova-ix/donut-base-finetuned-cord-v2"
|
| 28 |
+
)
|
| 29 |
+
# pretrained_model: DonutModel = DonutModel.from_pretrained(
|
| 30 |
+
# "result", local_files_only=True
|
| 31 |
+
# )
|
| 32 |
pretrained_model.eval()
|
| 33 |
|
| 34 |
demo = gr.Interface(
|
| 35 |
fn=demo_process,
|
| 36 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 37 |
outputs="json",
|
| 38 |
title=f"Donut π© demonstration for `cord-v2` task",
|
| 39 |
description="""This model is trained with 800 Indonesian receipt images of CORD dataset. <br>
|
|
|
|
| 43 |
More details are available at:
|
| 44 |
- Paper: https://arxiv.org/abs/2111.15664
|
| 45 |
- GitHub: https://github.com/clovaai/donut""",
|
| 46 |
+
examples=[
|
| 47 |
+
["sample_image_cord_test_receipt_00004.png"],
|
| 48 |
+
["sample_image_cord_test_receipt_00012.png"],
|
| 49 |
+
],
|
| 50 |
cache_examples=False,
|
| 51 |
)
|
| 52 |
|
receipts_app.py
CHANGED
|
@@ -20,15 +20,9 @@ def demo_process(input_img):
|
|
| 20 |
# task_prompt = f"<s_cord-v2>"
|
| 21 |
task_prompt = f"<s_receipts>"
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
# image.save("cord_sample_receipt1.png")
|
| 25 |
-
# image = Image.open("./sample_image_cord_test_receipt_00012.png")
|
| 26 |
-
# image.save("cord_sample_receipt2.png")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
pretrained_model = DonutModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
| 31 |
-
# pretrained_model: DonutModel = DonutModel.from_pretrained("result", local_files_only=True)
|
| 32 |
pretrained_model.to(device)
|
| 33 |
pretrained_model.eval()
|
| 34 |
|
|
|
|
| 20 |
# task_prompt = f"<s_cord-v2>"
|
| 21 |
task_prompt = f"<s_receipts>"
|
| 22 |
|
| 23 |
+
device = 'cpu' # 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
pretrained_model: DonutModel = DonutModel.from_pretrained("result", local_files_only=True)
|
|
|
|
|
|
|
|
|
|
| 26 |
pretrained_model.to(device)
|
| 27 |
pretrained_model.eval()
|
| 28 |
|