lsatone / backend /smart_frame_selector.py
3v324v23's picture
Update Comic123 with local comic folder files
83e35a7
"""
Smart Frame Selection to Avoid Closed Eyes
Uses multiple techniques to select best frames
"""
import cv2
import numpy as np
import os
from typing import List, Tuple
import shutil
class SimpleEyeDetector:
"""Simple but effective eye detection without heavy dependencies"""
def __init__(self):
# Load cascades
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
self.eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
def detect_blink_score(self, image_path: str) -> float:
"""
Calculate blink score (0-100)
Higher score = eyes more likely open
"""
img = cv2.imread(image_path)
if img is None:
return 50.0 # Default middle score
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces
faces = self.face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) == 0:
return 50.0 # No face, neutral score
total_score = 0.0
face_count = 0
for (x, y, w, h) in faces:
# Extract face region
face_roi = gray[y:y+h, x:x+w]
# Focus on eye region (upper half of face)
eye_region = face_roi[int(h*0.2):int(h*0.5), :]
# Method 1: Eye cascade detection
eyes = self.eye_cascade.detectMultiScale(eye_region, 1.1, 3)
eye_score = 0.0
if len(eyes) >= 2:
eye_score += 40.0 # Both eyes detected
elif len(eyes) == 1:
eye_score += 20.0 # One eye detected
# Method 2: Analyze eye region brightness variation
# Open eyes have more contrast
eye_std = np.std(eye_region)
if eye_std > 20:
eye_score += 30.0
elif eye_std > 10:
eye_score += 15.0
# Method 3: Edge detection in eye region
# Open eyes have more edges
edges = cv2.Canny(eye_region, 30, 100)
edge_density = np.sum(edges > 0) / edges.size
if edge_density > 0.1:
eye_score += 30.0
elif edge_density > 0.05:
eye_score += 15.0
total_score += eye_score
face_count += 1
return total_score / face_count if face_count > 0 else 50.0
def is_blurry(self, image_path: str) -> bool:
"""Check if image is blurry using Laplacian variance"""
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
if img is None:
return True
laplacian = cv2.Laplacian(img, cv2.CV_64F)
variance = laplacian.var()
return variance < 100 # Threshold for blur
class FrameQualityAnalyzer:
"""Analyze overall frame quality"""
def __init__(self):
self.eye_detector = SimpleEyeDetector()
def analyze_frame(self, image_path: str) -> dict:
"""Comprehensive frame analysis"""
img = cv2.imread(image_path)
if img is None:
return {'total_score': 0, 'usable': False}
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Initialize scores
scores = {
'eye_score': 0,
'sharpness_score': 0,
'brightness_score': 0,
'face_score': 0,
'total_score': 0,
'usable': True
}
# 1. Eye/blink detection (40% weight)
scores['eye_score'] = self.eye_detector.detect_blink_score(image_path)
# 2. Sharpness (20% weight)
if not self.eye_detector.is_blurry(image_path):
scores['sharpness_score'] = 100
else:
scores['sharpness_score'] = 30
# 3. Brightness (20% weight)
brightness = np.mean(gray)
if 60 < brightness < 200:
scores['brightness_score'] = 100
elif 40 < brightness < 220:
scores['brightness_score'] = 60
else:
scores['brightness_score'] = 20
# 4. Face detection (20% weight)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces) > 0:
scores['face_score'] = 100
else:
scores['face_score'] = 0
# Calculate total score
scores['total_score'] = (
scores['eye_score'] * 0.4 +
scores['sharpness_score'] * 0.2 +
scores['brightness_score'] * 0.2 +
scores['face_score'] * 0.2
)
# Mark as unusable if too low quality
scores['usable'] = scores['total_score'] > 30
return scores
def select_best_frames_avoid_blinks(
input_dir: str = 'frames',
output_dir: str = 'frames/final',
num_frames: int = 16,
extract_extra: bool = True
):
"""
Select best frames avoiding blinks and closed eyes
Args:
input_dir: Directory with extracted frames
output_dir: Directory for selected frames
num_frames: Number of frames to select
extract_extra: If True, extract 3x frames first for better selection
"""
print("👁️ Smart frame selection to avoid closed eyes...")
# Get all frame files
frame_files = sorted([f for f in os.listdir(input_dir)
if f.endswith(('.png', '.jpg', '.jpeg'))])
if len(frame_files) < num_frames:
print(f"⚠️ Only {len(frame_files)} frames available, need {num_frames}")
return
# Analyze all frames
analyzer = FrameQualityAnalyzer()
frame_analysis = []
print(f"🔍 Analyzing {len(frame_files)} frames...")
for i, frame_file in enumerate(frame_files):
frame_path = os.path.join(input_dir, frame_file)
analysis = analyzer.analyze_frame(frame_path)
frame_analysis.append({
'path': frame_path,
'filename': frame_file,
'index': i,
**analysis
})
# Progress indicator
if (i + 1) % 10 == 0:
print(f" Analyzed {i + 1}/{len(frame_files)} frames...")
# Sort by total score
frame_analysis.sort(key=lambda x: x['total_score'], reverse=True)
# Select frames with good distribution
selected_frames = []
selected_indices = set()
min_frame_distance = max(1, len(frame_files) // (num_frames * 2))
# First pass: Select high-quality frames with spacing
for frame in frame_analysis:
if len(selected_frames) >= num_frames:
break
if not frame['usable']:
continue
# Check distance from already selected frames
too_close = any(
abs(frame['index'] - idx) < min_frame_distance
for idx in selected_indices
)
if not too_close:
selected_frames.append(frame)
selected_indices.add(frame['index'])
# Debug info
print(f" Selected frame {frame['filename']}: "
f"Score={frame['total_score']:.1f}, "
f"Eyes={frame['eye_score']:.1f}")
# Second pass: Fill remaining slots if needed
if len(selected_frames) < num_frames:
print(f"⚠️ Only found {len(selected_frames)} good frames, adding more...")
for frame in frame_analysis:
if frame not in selected_frames and frame['usable']:
selected_frames.append(frame)
if len(selected_frames) >= num_frames:
break
# Final pass: If still not enough, take what we can
if len(selected_frames) < num_frames:
for frame in frame_analysis:
if frame not in selected_frames:
selected_frames.append(frame)
if len(selected_frames) >= num_frames:
break
# Sort selected frames by original index to maintain sequence
selected_frames.sort(key=lambda x: x['index'])
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Copy selected frames
for i, frame in enumerate(selected_frames[:num_frames]):
src_path = frame['path']
dst_filename = f'frame{i:03d}.png'
dst_path = os.path.join(output_dir, dst_filename)
shutil.copy2(src_path, dst_path)
print(f" ✅ {frame['filename']}{dst_filename} "
f"(Score: {frame['total_score']:.1f}, Eyes: {frame['eye_score']:.1f})")
print(f"\n✅ Selected {len(selected_frames[:num_frames])} best frames")
print(f"📊 Average eye score: {np.mean([f['eye_score'] for f in selected_frames[:num_frames]]):.1f}/100")
# Quick function to use in existing pipeline
def ensure_open_eyes_in_frames(frames_dir: str = 'frames/final'):
"""
Post-process existing frames to check for closed eyes
Replace bad frames with better alternatives
"""
analyzer = FrameQualityAnalyzer()
frame_files = sorted([f for f in os.listdir(frames_dir)
if f.endswith(('.png', '.jpg'))])
print(f"\n👁️ Checking {len(frame_files)} frames for closed eyes...")
for frame_file in frame_files:
frame_path = os.path.join(frames_dir, frame_file)
analysis = analyzer.analyze_frame(frame_path)
if analysis['eye_score'] < 40: # Likely closed eyes
print(f" ⚠️ {frame_file}: Low eye score ({analysis['eye_score']:.1f})")
# In a full implementation, we would replace this frame
# with a better one from nearby frames
if __name__ == "__main__":
# Test on existing frames
if os.path.exists('frames'):
select_best_frames_avoid_blinks('frames', 'frames/final_no_blinks', 16)