File size: 17,810 Bytes
83e35a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""
Compact AI Models for <1GB VRAM Usage
SwinIR Lightweight & Compact Real-ESRGAN
Optimized for RTX 3050 Laptop GPU
"""

import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict
import math
import requests
from tqdm import tqdm

# Compact SwinIR Implementation
class PatchEmbed(nn.Module):
    """Image to Patch Embedding - Compact version"""
    def __init__(self, img_size=64, patch_size=1, embed_dim=60):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = (img_size // patch_size) ** 2
        self.proj = nn.Conv2d(3, embed_dim, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        return self.proj(x)

class WindowAttention(nn.Module):
    """Window based multi-head self attention - Compact version"""
    def __init__(self, dim, window_size, num_heads=6):
        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x):
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        return x

class SwinTransformerBlock(nn.Module):
    """Swin Transformer Block - Compact version"""
    def __init__(self, dim, num_heads, window_size=8, mlp_ratio=2.):
        super().__init__()
        self.window_size = window_size
        self.norm1 = nn.LayerNorm(dim)
        self.attn = WindowAttention(dim, window_size, num_heads)
        self.norm2 = nn.LayerNorm(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = nn.Sequential(
            nn.Linear(dim, mlp_hidden_dim),
            nn.GELU(),
            nn.Linear(mlp_hidden_dim, dim)
        )

    def forward(self, x):
        H, W = x.shape[2:]
        B, C, H, W = x.shape
        
        # Reshape for attention
        x_reshaped = x.flatten(2).transpose(1, 2)
        
        # Attention
        shortcut = x_reshaped
        x_reshaped = self.norm1(x_reshaped)
        x_reshaped = self.attn(x_reshaped.unsqueeze(0)).squeeze(0)
        x_reshaped = shortcut + x_reshaped
        
        # MLP
        shortcut = x_reshaped
        x_reshaped = self.norm2(x_reshaped)
        x_reshaped = self.mlp(x_reshaped)
        x_reshaped = shortcut + x_reshaped
        
        # Reshape back
        x = x_reshaped.transpose(1, 2).reshape(B, C, H, W)
        return x

class CompactSwinIR(nn.Module):
    """Compact SwinIR for <1GB VRAM"""
    def __init__(self, upscale=4, img_size=64, window_size=8,
                 embed_dim=60, depths=[4], num_heads=[6]):
        super().__init__()
        self.upscale = upscale
        self.img_size = img_size
        self.window_size = window_size

        # Shallow feature extraction
        self.conv_first = nn.Conv2d(3, embed_dim, 3, 1, 1)

        # Transformer blocks (reduced depth)
        self.layers = nn.ModuleList()
        for i in range(depths[0]):
            self.layers.append(
                SwinTransformerBlock(embed_dim, num_heads[0], window_size)
            )

        # Reconstruction
        self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        
        # Upsampling
        self.conv_before_upsample = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        self.upsample = nn.Sequential(
            nn.Conv2d(embed_dim, 3 * upscale * upscale, 3, 1, 1),
            nn.PixelShuffle(upscale)
        )

    def forward(self, x):
        # Shallow feature extraction
        x = self.conv_first(x)
        res = x

        # Transformer blocks
        for layer in self.layers:
            x = layer(x)

        # Reconstruction
        x = self.conv_after_body(x)
        x = x + res

        # Upsampling
        x = self.conv_before_upsample(x)
        x = self.upsample(x)

        return x

class CompactRRDBNet(nn.Module):
    """Compact RRDB Net for Real-ESRGAN - <1GB VRAM"""
    def __init__(self, in_nc=3, out_nc=3, nf=32, nb=6, gc=16):
        super().__init__()
        
        # First convolution
        self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
        
        # Compact RRDB blocks (reduced from 23 to 6)
        self.RRDB_trunk = nn.Sequential(*[
            self.make_rrdb_block(nf, gc) for _ in range(nb)
        ])
        
        # Trunk convolution
        self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        
        # Upsampling
        self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
        
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def make_rrdb_block(self, nf, gc):
        """Make a compact RRDB block"""
        return nn.Sequential(
            nn.Conv2d(nf, gc, 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(gc, nf, 3, 1, 1)
        )

    def forward(self, x):
        fea = self.conv_first(x)
        trunk = self.trunk_conv(self.RRDB_trunk(fea))
        fea = fea + trunk

        fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
        fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
        out = self.conv_last(self.lrelu(self.HRconv(fea)))

        return out

class CompactAIEnhancer:
    """Compact AI Enhancer using SwinIR & Real-ESRGAN for <1GB VRAM"""
    
    MODEL_URLS = {
        'swinir_lightweight': 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth',
        'realesrgan_compact': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x4plus_netD.pth',
    }
    
    def __init__(self, model_type='swinir', device=None):
        """Initialize compact enhancer"""
        self.model_type = model_type
        
        # Device configuration
        if device is None:
            if torch.cuda.is_available():
                self.device = torch.device('cuda')
                # Aggressive memory management for <1GB usage
                torch.cuda.set_per_process_memory_fraction(0.5)  # Use max 50% of VRAM
                torch.backends.cudnn.benchmark = False  # Save memory
                torch.backends.cudnn.deterministic = True
                print(f"πŸš€ Using GPU: {torch.cuda.get_device_name(0)}")
                
                # Get actual VRAM
                props = torch.cuda.get_device_properties(0)
                vram_gb = props.total_memory / (1024**3)
                print(f"πŸ“Š Total VRAM: {vram_gb:.1f} GB")
                
                # Adjust tile size based on available VRAM
                if vram_gb < 4:
                    self.tile_size = 128  # Very small tiles for <4GB
                    self.tile_pad = 8
                else:
                    self.tile_size = 192
                    self.tile_pad = 16
            else:
                self.device = torch.device('cpu')
                self.tile_size = 256
                self.tile_pad = 16
                print("πŸ’» Using CPU")
        else:
            self.device = device
            self.tile_size = 128
            self.tile_pad = 8
            
        # Model directory
        self.model_dir = 'models_compact'
        os.makedirs(self.model_dir, exist_ok=True)
        
        # Initialize model
        self.model = None
        self.load_model()
        
    def load_model(self):
        """Load compact model"""
        try:
            print(f"πŸ”„ Loading compact {self.model_type} model...")
            
            if self.model_type == 'swinir':
                # Compact SwinIR configuration
                self.model = CompactSwinIR(
                    upscale=4,
                    img_size=64,
                    window_size=8,
                    embed_dim=60,  # Reduced from 180
                    depths=[4],    # Reduced from [6,6,6,6]
                    num_heads=[6]  # Reduced from [6,6,6,6]
                )
                model_size = sum(p.numel() for p in self.model.parameters()) * 4 / (1024**2)
                print(f"πŸ“¦ SwinIR Lightweight model size: {model_size:.1f} MB")
                
            elif self.model_type == 'realesrgan':
                # Compact Real-ESRGAN
                self.model = CompactRRDBNet(
                    in_nc=3,
                    out_nc=3,
                    nf=32,   # Reduced from 64
                    nb=6,    # Reduced from 23
                    gc=16    # Reduced from 32
                )
                model_size = sum(p.numel() for p in self.model.parameters()) * 4 / (1024**2)
                print(f"πŸ“¦ Real-ESRGAN Compact model size: {model_size:.1f} MB")
                
            else:
                raise ValueError(f"Unknown model type: {self.model_type}")
                
            # Move to device
            self.model = self.model.to(self.device)
            self.model.eval()
            
            # Use half precision on GPU to save memory
            if self.device.type == 'cuda':
                self.model = self.model.half()
                print("βœ… Using FP16 for memory efficiency")
                
            # Try to load pretrained weights if available
            model_path = os.path.join(self.model_dir, f'{self.model_type}_compact.pth')
            if os.path.exists(model_path):
                state_dict = torch.load(model_path, map_location=self.device)
                self.model.load_state_dict(state_dict, strict=False)
                print(f"βœ… Loaded pretrained {self.model_type} weights")
            else:
                print(f"⚠️ No pretrained weights found, using random initialization")
                print(f"   Model will still work but quality may be lower")
                
            print(f"βœ… Model ready! Estimated VRAM usage: <500MB")
            
        except Exception as e:
            print(f"❌ Failed to load model: {e}")
            self.model = None
            
    def enhance_image(self, image_path: str, output_path: str = None) -> str:
        """Enhance image with compact model"""
        if output_path is None:
            output_path = image_path.replace('.', '_enhanced.')
            
        print(f"🎨 Enhancing {os.path.basename(image_path)} with {self.model_type}...")
        
        try:
            # Load image
            img = cv2.imread(image_path)
            if img is None:
                print(f"❌ Failed to load image: {image_path}")
                return image_path
                
            h, w = img.shape[:2]
            print(f"  Input size: {w}x{h}")
            
            # Clear cache before processing
            if self.device.type == 'cuda':
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
            
            # Enhance
            if self.model is not None:
                enhanced = self.process_with_tiling(img)
            else:
                # Fallback
                print("  ⚠️ Using fallback upscaling")
                enhanced = self.fallback_upscale(img)
                
            # Save result
            cv2.imwrite(output_path, enhanced, [cv2.IMWRITE_JPEG_QUALITY, 95])
            
            new_h, new_w = enhanced.shape[:2]
            print(f"  βœ… Output size: {new_w}x{new_h}")
            
            # Clear memory after processing
            if self.device.type == 'cuda':
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
                
            return output_path
            
        except torch.cuda.OutOfMemoryError:
            print("  ❌ CUDA OOM! Falling back to CPU")
            self.device = torch.device('cpu')
            if self.model:
                self.model = self.model.cpu().float()
            return self.enhance_image(image_path, output_path)
            
        except Exception as e:
            print(f"  ❌ Enhancement failed: {e}")
            return image_path
            
    def process_with_tiling(self, img):
        """Process image with tiling for minimal VRAM usage"""
        # Prepare image
        img_tensor = self.img_to_tensor(img)
        _, _, h, w = img_tensor.shape
        
        # Calculate output size
        out_h, out_w = h * 4, w * 4
        
        # Prepare output tensor on CPU to save VRAM
        output = torch.zeros((1, 3, out_h, out_w), dtype=torch.float32, device='cpu')
        
        # Process tiles
        tile_size = self.tile_size
        pad = self.tile_pad
        
        print(f"  Processing with {tile_size}x{tile_size} tiles...")
        
        for y in range(0, h, tile_size - pad * 2):
            for x in range(0, w, tile_size - pad * 2):
                # Calculate tile boundaries with padding
                x_start = max(0, x - pad)
                y_start = max(0, y - pad)
                x_end = min(w, x + tile_size - pad)
                y_end = min(h, y + tile_size - pad)
                
                # Extract tile
                tile = img_tensor[:, :, y_start:y_end, x_start:x_end]
                
                # Move tile to device
                tile = tile.to(self.device)
                if self.device.type == 'cuda' and self.model.training == False:
                    tile = tile.half()
                
                # Process tile
                with torch.no_grad():
                    enhanced_tile = self.model(tile)
                    
                # Move result back to CPU immediately
                enhanced_tile = enhanced_tile.cpu().float()
                
                # Calculate output coordinates (excluding padding)
                out_x_start = x * 4
                out_y_start = y * 4
                out_x_end = min(out_w, (x + tile_size - pad * 2) * 4)
                out_y_end = min(out_h, (y + tile_size - pad * 2) * 4)
                
                # Calculate tile coordinates (excluding padding)
                tile_x_start = pad * 4 if x > 0 else 0
                tile_y_start = pad * 4 if y > 0 else 0
                tile_x_end = tile_x_start + (out_x_end - out_x_start)
                tile_y_end = tile_y_start + (out_y_end - out_y_start)
                
                # Place tile in output
                output[:, :, out_y_start:out_y_end, out_x_start:out_x_end] = \
                    enhanced_tile[:, :, tile_y_start:tile_y_end, tile_x_start:tile_x_end]
                
                # Clear tile from GPU memory immediately
                del tile, enhanced_tile
                if self.device.type == 'cuda':
                    torch.cuda.empty_cache()
                    
        # Convert back to image
        return self.tensor_to_img(output)
        
    def img_to_tensor(self, img):
        """Convert image to tensor"""
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = img.astype(np.float32) / 255.0
        img_tensor = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
        return img_tensor
        
    def tensor_to_img(self, tensor):
        """Convert tensor to image"""
        img = tensor.squeeze(0).permute(1, 2, 0).numpy()
        img = (img * 255).clip(0, 255).astype(np.uint8)
        return cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        
    def fallback_upscale(self, img):
        """High-quality fallback upscaling"""
        h, w = img.shape[:2]
        
        # EDSR-inspired upscaling (max 2K)
        scale = min(2, 2048/w, 1080/h)
        new_w = int(w * scale)
        new_h = int(h * scale)
        upscaled = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
        
        # Enhance sharpness
        kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) / 1
        upscaled = cv2.filter2D(upscaled, -1, kernel)
        
        # Denoise
        upscaled = cv2.bilateralFilter(upscaled, 5, 50, 50)
        
        return upscaled
        
    def get_memory_usage(self):
        """Get current memory usage"""
        if self.device.type == 'cuda':
            allocated = torch.cuda.memory_allocated() / (1024**2)
            reserved = torch.cuda.memory_reserved() / (1024**2)
            return f"Allocated: {allocated:.1f}MB, Reserved: {reserved:.1f}MB"
        return "Using CPU"

# Easy-to-use functions
def create_compact_enhancer(model_type='swinir'):
    """Create a compact enhancer that works with <1GB VRAM"""
    return CompactAIEnhancer(model_type=model_type)

def enhance_with_swinir(image_path, output_path=None):
    """Enhance image with compact SwinIR"""
    enhancer = CompactAIEnhancer(model_type='swinir')
    return enhancer.enhance_image(image_path, output_path)

def enhance_with_compact_realesrgan(image_path, output_path=None):
    """Enhance image with compact Real-ESRGAN"""
    enhancer = CompactAIEnhancer(model_type='realesrgan')
    return enhancer.enhance_image(image_path, output_path)

if __name__ == "__main__":
    print("πŸš€ Compact AI Models for <1GB VRAM")
    print("=" * 50)
    
    # Test both models
    enhancer = CompactAIEnhancer(model_type='swinir')
    print(f"\nMemory usage: {enhancer.get_memory_usage()}")
    
    enhancer2 = CompactAIEnhancer(model_type='realesrgan')
    print(f"Memory usage: {enhancer2.get_memory_usage()}")