File size: 41,927 Bytes
adca48b 1438f9e adca48b 1438f9e adca48b 1438f9e adca48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
import ast
import re, json
from enum import Enum
from typing import Any, Dict, List, Tuple, Optional, Callable
from .utils import RawInput, img2base64, python_eval
from .models import LLMModel, SamplingParams
# ---------------------------------------------------------------------
# PIPSMode enum for agent vs interactive modes
# ---------------------------------------------------------------------
class PIPSMode(Enum):
AGENT = "AGENT"
INTERACTIVE = "INTERACTIVE"
# ---------------------------------------------------------------------
# Helper-type aliases
TokenCb = Callable[[str, int, str], None]
CbMap = Dict[str, Callable[..., Any]]
# ---------------------------------------------------------------------
class PIPSSolver:
"""Python Iterative Problem Solving (PIPS) solver — unified streaming & non-streaming."""
def __init__(
self,
model: LLMModel,
*,
max_iterations: int = 8,
temperature: float = 0.0,
max_tokens: int = 50000,
top_p: float = 1.0,
interactive: bool = False,
critic_model: Optional[LLMModel] = None,
):
"""
Args:
model: An object that implements .chat(...) and, optionally, .stream_chat(...).
max_iterations: Maximum refinement loops for the code-generation mode.
temperature: Sampling temperature passed to the LLM.
max_tokens: Max tokens for each LLM response.
top_p: Nucleus-sampling parameter.
interactive: Whether to use interactive mode (wait for user feedback).
critic_model: Optional separate model for criticism (defaults to main model).
"""
self.model = model
self.critic_model = critic_model or model
self.max_iterations = max_iterations
self.temperature = temperature
self.max_tokens = max_tokens
self.top_p = top_p
self.interactive = interactive
self._mode_decision_summary: Optional[Dict[str, Any]] = None
# Interactive mode state
self._checkpoint = None
self._current_conversation = None
# System prompt identical to the original implementation
self.system_prompt = """You will be given a question and you must answer it by extracting relevant symbols in JSON format and then writing a Python program to calculate the final answer.
You MUST always plan extensively before outputting any symbols or code.
You MUST iterate and keep going until the problem is solved.
# Workflow
## Problem Solving Steps
1. First extract relevant information from the input as JSON. Try to represent the relevant information in as much of a structured format as possible to help with further reasoning/processing.
2. Using the information extracted, determine a reasonable approach to solving the problem using code, such that executing the code will return the final answer.
3. Write a Python program to calculate and return the final answer. Use comments to explain the structure of the code and do not use a main() function.
The JSON must be enclosed in a markdown code block and the Python function must be in a separate markdown code block and be called `solve` and accept a single input called `symbols` representing the JSON information extracted. Do not include any `if __name__ == "__main__"` statement and you can assume the JSON will be loaded into the variable called `symbols` by the user.
The Python code should not just return the answer or perform all reasoning in comments and instead leverage the code itself to perform the reasoning.
Be careful that the code returns the answer as expected by the question, for instance, if the question is multiple choice, the code must return the choice as described in the question.
Be sure to always output a JSON code block and a Python code block.
Make sure to follow these formatting requirements exactly.
"""
# ========= INTERNAL HELPERS =====================================
_MODE_SELECTION_LIST_RE = re.compile(r"\[([0-9eE+.\s,-]+)\]")
def _parse_probability_scores(self, raw: str) -> Optional[List[float]]:
"""Extract a list of 10 probability scores from raw LLM output."""
if not raw:
return None
candidates: List[Any] = []
try:
parsed = ast.literal_eval(raw.strip())
candidates.append(parsed)
except Exception:
pass
for match in self._MODE_SELECTION_LIST_RE.finditer(raw):
candidate_str = f"[{match.group(1)}]"
try:
candidates.append(ast.literal_eval(candidate_str))
except Exception:
continue
for candidate in candidates:
if (
isinstance(candidate, list)
and len(candidate) == 10
and all(isinstance(x, (int, float)) for x in candidate)
):
floats = [float(x) for x in candidate]
if all(0.0 <= x <= 1.0 for x in floats):
return floats
return None
def _build_mode_selection_prompt(self, sample: RawInput) -> List[dict[str, Any]]:
"""Create the conversation for deciding between code and chain-of-thought."""
from .prompts import CHOOSE_CONSERVATIVE_COT_VS_CODE_PROMPT
instructions = CHOOSE_CONSERVATIVE_COT_VS_CODE_PROMPT.strip()
extra_instruction = (
"\nAt the end of your response, output only the list of 10 probabilities inside square brackets "
"after the text 'FINAL ANSWER:'."
)
content: List[dict[str, Any]] = [{"type": "text", "text": f"{instructions}{extra_instruction}"}]
if sample.image_input is not None:
content.append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img2base64(sample.image_input)}",
"detail": "high",
},
}
)
if sample.text_input is not None:
content.append({"type": "text", "text": f"TARGET QUESTION:\n{sample.text_input}"})
return [{"role": "user", "content": content}]
def _summarise_messages_for_log(self, messages: List[dict[str, Any]]) -> List[dict[str, Any]]:
"""Return a copy of the conversation with image payloads redacted for logging."""
summary: List[dict[str, Any]] = []
for message in messages:
content = message.get("content")
if isinstance(content, list):
new_content: List[dict[str, Any]] = []
for item in content:
if isinstance(item, dict) and item.get("type") == "image_url":
new_content.append({"type": "text", "text": "[image content omitted]"})
else:
new_content.append(item)
summary.append({**message, "content": new_content})
else:
summary.append(dict(message))
return summary
def _decide_solving_mode(
self,
messages: List[dict[str, Any]],
*,
max_tokens: int,
) -> Dict[str, Any]:
"""Run the self-reflection prompt to choose between code and chain-of-thought."""
sampling_params = SamplingParams(temperature=0.0, max_tokens=max_tokens, top_p=1.0)
try:
response = self.model.chat(messages, sampling_params=sampling_params, use_tqdm=False)
except Exception as exc:
print(f"[DEBUG] Mode selection prompt raised exception: {exc}. Falling back to chain-of-thought.")
return {
"use_code": False,
"scores": None,
"average": None,
"raw_response": "",
"error": str(exc),
}
raw_text = ""
if response and getattr(response[0], "outputs", None):
raw_text = response[0].outputs[0].text or ""
scores = self._parse_probability_scores(raw_text)
if scores is None:
print("[DEBUG] Mode selection prompt failed to yield valid probability list; defaulting to chain-of-thought.")
return {
"use_code": False,
"scores": None,
"average": None,
"raw_response": raw_text,
"error": None,
}
average = sum(scores) / len(scores)
use_code = average > 0.5
return {
"use_code": use_code,
"scores": scores,
"average": average,
"raw_response": raw_text,
"error": None,
}
def _chat(
self,
conversation: List[Dict[str, Any]],
sampling_params: SamplingParams,
stream: bool,
iteration: int,
callbacks: Optional[CbMap] = None,
) -> str:
"""
Wrapper around model.chat / model.stream_chat that:
• chooses the right API based on `stream`
• fires streaming callbacks if supplied
• returns the full assistant text
"""
callbacks = callbacks or {}
# Dummy lambdas so we can call without branch checks later
on_start = callbacks.get("on_llm_streaming_start", lambda *a, **k: None)
on_token = callbacks.get("on_llm_streaming_token", lambda *a, **k: None)
on_end = callbacks.get("on_llm_streaming_end", lambda *a, **k: None)
interrupted = callbacks.get("check_interrupted", lambda: False)
model_name = self.model.__class__.__name__
if not stream:
# plain synchronous call
resp = self.model.chat(conversation, sampling_params=sampling_params, use_tqdm=False)
return resp[0].outputs[0].text
# ---- streaming path ----
on_start(iteration, model_name)
def _emit(tok: str):
if not interrupted():
on_token(tok, iteration, model_name)
if hasattr(self.model, "stream_chat"):
resp = self.model.stream_chat(
conversation,
sampling_params=sampling_params,
emit_callback=_emit,
interrupted_callback=interrupted,
)
else: # fallback
resp = self.model.chat(conversation, sampling_params=sampling_params, use_tqdm=False)
on_end(iteration, model_name)
return resp[0].outputs[0].text
# ---------------------------------------------------------------
def solve(
self,
sample: RawInput,
*,
stream: bool = False,
callbacks: Optional[CbMap] = None,
additional_rules: str = "",
decision_max_tokens: int = 1024,
interactive_requested: bool = False,
) -> Tuple[str, Dict[str, Any], Dict[str, Any]]:
"""Automatically choose between chain-of-thought and code-based solving."""
callbacks = callbacks or {}
step = callbacks.get("on_step_update", lambda *a, **k: None)
decision_messages = self._build_mode_selection_prompt(sample)
decision_prompt_details = {
"description": "Choosing between chain-of-thought and iterative coding",
"conversation": self._summarise_messages_for_log(decision_messages),
}
step(
"mode_selection",
"Choosing between chain-of-thought reasoning and iterative coding…",
prompt_details=decision_prompt_details,
)
decision = self._decide_solving_mode(decision_messages, max_tokens=decision_max_tokens)
use_code = decision.get("use_code", False)
average = decision.get("average")
scores = decision.get("scores")
decision_error = decision.get("error")
if scores is None:
decision_message = "Could not parse confidence scores; defaulting to chain-of-thought reasoning."
else:
decision_message = (
f"Average code suitability score: {average:.2f}. "
f"Proceeding with {'iterative code generation' if use_code else 'chain-of-thought reasoning'}."
)
step(
"mode_selection",
decision_message,
prompt_details={**decision_prompt_details, "raw_response": decision.get("raw_response", ""), "error": decision_error},
)
if interactive_requested and not use_code:
step(
"mode_selection",
"Interactive mode requested, but chain-of-thought was selected; running without interactive checkpoints.",
prompt_details=None,
)
mode_decision_summary = {
"use_code": use_code,
"scores": scores,
"average_score": average,
"raw_response": decision.get("raw_response", ""),
"prompt": decision_prompt_details["conversation"],
"error": decision_error,
}
self._mode_decision_summary = mode_decision_summary
original_interactive = self.interactive
if not use_code:
self.interactive = False
try:
if use_code:
answer, logs = self.solve_with_code(
sample,
stream=stream,
callbacks=callbacks,
additional_rules=additional_rules,
)
else:
answer, logs = self.solve_chain_of_thought(
sample,
stream=stream,
callbacks=callbacks,
additional_rules=additional_rules,
)
finally:
self.interactive = original_interactive
if isinstance(logs, dict):
logs.setdefault("mode_decision", mode_decision_summary)
return answer, logs, mode_decision_summary
def _extract_components(self, output: str) -> Tuple[Any, str, str]:
"""(unchanged helper) extract JSON, code, and reasoning."""
json_obj, code_str, reasoning = "", "", ""
try:
if m := re.findall(r"```json(.*?)```", output, re.DOTALL):
json_obj = json.loads(m[-1])
except Exception:
pass
try:
j_end = output.index("```", output.index("```json") + 7) + 3
p_start = output.index("```python", j_end)
reasoning = output[j_end:p_start].strip()
except Exception:
pass
try:
if m := re.findall(r"```python(.*?)```", output, re.DOTALL):
code_str = m[-1]
except Exception:
pass
return json_obj, code_str, reasoning
# ========= PUBLIC SOLVERS ======================================
def solve_chain_of_thought(
self,
sample: RawInput,
*,
stream: bool = False,
callbacks: Optional[CbMap] = None,
additional_rules: str = "",
) -> Tuple[str, Dict[str, Any]]:
"""
One implementation covers both streaming & non-streaming.
If `stream=True`, supply the standard streaming callbacks.
"""
callbacks = callbacks or {}
step = callbacks.get("on_step_update", lambda *a, **k: None)
logs: Dict[str, Any] = {}
# Build prompt with additional rules if provided
system_content = ""
if additional_rules.strip():
system_content = f"Additional Requirements:\n{additional_rules.strip()}\n\nMake sure to follow these additional requirements when answering."
print(f"[DEBUG] Added custom rules to chain of thought prompt: {repr(additional_rules)}")
if sample.image_input is not None:
img_b64 = img2base64(sample.image_input)
user_content = [
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_b64}"}},
{"type": "text", "text": f"Question: {sample.text_input}"},
{"type": "text", "text": "Answer step-by-step and finish with 'FINAL ANSWER:'"},
]
else:
user_content = f"Question: {sample.text_input}\nAnswer step-by-step and finish with 'FINAL ANSWER:'."
prompt = []
if system_content:
prompt.append({"role": "system", "content": system_content})
prompt.append({"role": "user", "content": user_content})
params = SamplingParams(self.temperature, self.max_tokens, self.top_p)
# Create prompt details for chain of thought
cot_prompt_details = {
"description": "Chain of thought reasoning",
"conversation": prompt
}
step("reasoning", "Thinking step-by-step...", prompt_details=cot_prompt_details)
# Call LLM through unified wrapper
output = self._chat(prompt, params, stream, iteration=0, callbacks=callbacks)
logs["output"] = output
# Parse FINAL ANSWER (same logic)
ans = ""
try:
ans = re.findall(r"FINAL ANSWER:(.*)", output, re.DOTALL)[-1].strip()
except Exception:
pass
# Check if we were interrupted during processing
interrupted = callbacks.get("check_interrupted", lambda: False)
if interrupted():
step("interrupted", "PIPS was interrupted by the user.", prompt_details=None)
else:
step("finished", "Chain of thought completed!", prompt_details=None)
final = f"FINAL ANSWER: {ans}" if ans else output
logs["final_answer"] = ans
return final, logs
# ---------------------------------------------------------------
def solve_with_code(
self,
sample: RawInput,
*,
stream: bool = False,
callbacks: Optional[CbMap] = None,
additional_rules: str = "",
) -> Tuple[str, Dict[str, Any]]:
"""
Iterative code-generation solver (streaming or not).
`callbacks` is optional; provide it only when you care about
fine-grained streaming events.
Args:
sample: The raw input containing text and/or image.
stream: Whether to stream tokens from the underlying LLM.
callbacks: Optional callback map for streaming & execution events.
additional_rules: Extra natural-language rules that will be forwarded to the internal code critic for more specialized checking.
"""
callbacks = callbacks or {}
interrupted = callbacks.get("check_interrupted", lambda: False)
step = callbacks.get("on_step_update", lambda *a, **k: None)
logs = {"all_outputs": [], "all_symbols": [], "all_programs": [], "all_reasoning": []}
# Abort early?
if interrupted():
return "", logs
# ---- Build initial prompt with custom rules ----
# Create system prompt with additional rules if provided
system_content = self.system_prompt
if additional_rules.strip():
system_content += f"\n\nAdditional Requirements: \n{additional_rules.strip()}\n\n Make sure to follow these additional requirements when generating your solution."
print(f"[DEBUG] Added custom rules to initial code generation prompt: {repr(additional_rules)}")
if sample.image_input is not None:
img_b64 = img2base64(sample.image_input)
content = [
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_b64}"}},
{"type": "text", "text": f"Question: {sample.text_input}"},
]
else:
content = f"Question: {sample.text_input}"
conv = [
{"role": "system", "content": system_content},
{"role": "user", "content": content},
]
params = SamplingParams(self.temperature, self.max_tokens, self.top_p)
# Create prompt details for initial generation
initial_prompt_details = {
"description": "Initial solution generation",
"conversation": conv
}
step("initial_generation", "Generating first solution…", prompt_details=initial_prompt_details)
raw = self._chat(conv, params, stream, iteration=0, callbacks=callbacks)
logs["all_outputs"].append(raw)
conv.append({"role": "assistant", "content": raw})
# Extract JSON / code / reasoning
current_symbols, current_code, reasoning = self._extract_components(raw)
logs["all_symbols"].append(current_symbols)
logs["all_programs"].append(current_code)
if reasoning:
logs["all_reasoning"].append(reasoning)
# -------- execute & refine up to max_iterations --------
exec_out, stdout, err = self._run_code(current_symbols, current_code, 0, callbacks, logs)
for i in range(1, self.max_iterations + 1):
if interrupted():
break
# --- evaluate code quality with prompt details ---
feedback = self._critic(
question=sample.text_input,
code=current_code,
symbols=current_symbols,
out=exec_out,
stdout=stdout,
err=err,
params=params,
additional_rules=additional_rules,
stream=stream,
iteration=i,
callbacks=callbacks,
)
# Note: feedback is now displayed via streaming, no need for legacy callback
# Interactive mode: wait for user feedback if enabled
if self.interactive:
print(f"[DEBUG] Interactive mode triggered at iteration {i}")
# Emit waiting for user feedback event
on_waiting_for_user = callbacks.get("on_waiting_for_user", lambda *a, **k: None)
on_waiting_for_user(i, feedback, current_code, current_symbols)
print(f"[DEBUG] Emitted awaiting_user_feedback event")
# Store checkpoint for later continuation
self._checkpoint = {
"sample": sample,
"logs": logs,
"conv": conv,
"symbols": current_symbols,
"code": current_code,
"exec_out": exec_out,
"stdout": stdout,
"err": err,
"feedback": feedback,
"iteration": i,
"params": params,
"additional_rules": additional_rules,
"stream": stream,
"callbacks": callbacks
}
# Return control to web_app - it will call continue_from_checkpoint
return "", logs
# ask model to improve
fix_prompt = self._fix_prompt(sample.text_input, current_code, current_symbols, exec_out, stdout, err, feedback)
conv.append({"role": "user", "content": fix_prompt})
# Create prompt details for refinement
refinement_prompt_details = {
"description": f"Solution refinement (iteration {i})",
"conversation": conv
}
step("refinement", f"Refining solution (iteration {i})...", iteration=i, prompt_details=refinement_prompt_details)
raw = self._chat(conv, params, stream, iteration=i, callbacks=callbacks)
logs["all_outputs"].append(raw)
conv.append({"role": "assistant", "content": raw})
if "FINISHED" in raw:
break
# update code / symbols
new_symbols, new_code, reasoning = self._extract_components(raw)
if new_symbols:
current_symbols = new_symbols
logs["all_symbols"].append(new_symbols)
if new_code:
current_code = new_code
logs["all_programs"].append(new_code)
if reasoning:
logs["all_reasoning"].append(reasoning)
exec_out, stdout, err = self._run_code(current_symbols, current_code, i, callbacks, logs)
# Check if we were interrupted during processing
if interrupted():
step("interrupted", "PIPS was interrupted by the user.", prompt_details=None)
else:
step("finished", "Solution completed successfully!", prompt_details=None)
final = f"FINAL ANSWER: {exec_out}"
return final, logs
# ========= INTERACTIVE MODE HELPERS ============================
def continue_from_checkpoint(self, user_feedback: Dict[str, Any]) -> Tuple[str, Dict[str, Any]]:
"""
Continue solving from a saved checkpoint with user feedback.
Args:
user_feedback: Dictionary containing user feedback with keys:
- accept_critic: bool - whether to accept critic's feedback
- extra_comments: str - additional user comments
- quoted_ranges: list - specific code snippets user highlighted
- terminate: bool - whether user wants to terminate
Returns:
Final answer and logs
"""
if not self._checkpoint:
raise ValueError("No checkpoint available - cannot continue interactive mode")
checkpoint = self._checkpoint
user_feedback = user_feedback or {}
# Check if user wants to terminate
if user_feedback.get("terminate", False):
final = f"FINAL ANSWER: {checkpoint['exec_out']}"
return final, checkpoint["logs"]
# Merge critic feedback with user feedback
merged_feedback = self.merge_user_feedback(
checkpoint["feedback"],
user_feedback.get("accept_critic", True),
user_feedback.get("quoted_ranges", [])
)
# Check if user provided any feedback
has_user_feedback = bool(user_feedback.get("quoted_ranges", []))
# Continue the solving process
current_symbols = checkpoint["symbols"]
current_code = checkpoint["code"]
exec_out = checkpoint["exec_out"]
stdout = checkpoint["stdout"]
err = checkpoint["err"]
fix_prompt = self._fix_prompt(
checkpoint["sample"].text_input,
current_code,
current_symbols,
exec_out,
stdout,
err,
merged_feedback,
has_user_feedback
)
checkpoint["conv"].append({"role": "user", "content": fix_prompt})
# Create prompt details for refinement
refinement_prompt_details = {
"description": f"Solution refinement (iteration {checkpoint['iteration']})",
"conversation": checkpoint["conv"]
}
step = checkpoint["callbacks"].get("on_step_update", lambda *a, **k: None)
step("refinement", f"Refining solution (iteration {checkpoint['iteration']})...",
iteration=checkpoint['iteration'], prompt_details=refinement_prompt_details)
raw = self._chat(checkpoint["conv"], checkpoint["params"], checkpoint["stream"],
iteration=checkpoint['iteration'], callbacks=checkpoint["callbacks"])
checkpoint["logs"]["all_outputs"].append(raw)
checkpoint["conv"].append({"role": "assistant", "content": raw})
if "FINISHED" in raw:
final = f"FINAL ANSWER: {checkpoint['exec_out']}"
return final, checkpoint["logs"]
# Update code/symbols and continue
new_symbols, new_code, reasoning = self._extract_components(raw)
if new_symbols:
current_symbols = new_symbols
checkpoint["logs"]["all_symbols"].append(new_symbols)
if new_code:
current_code = new_code
checkpoint["logs"]["all_programs"].append(new_code)
if reasoning:
checkpoint["logs"]["all_reasoning"].append(reasoning)
exec_out, stdout, err = self._run_code(current_symbols, current_code, checkpoint['iteration'],
checkpoint["callbacks"], checkpoint["logs"])
checkpoint["symbols"] = current_symbols
checkpoint["code"] = current_code
checkpoint["exec_out"] = exec_out
checkpoint["stdout"] = stdout
checkpoint["err"] = err
# Temporarily disable interactive mode and continue with remaining iterations
original_interactive = self.interactive
self.interactive = False
# Continue solving from next iteration
remaining_iterations = self.max_iterations - checkpoint['iteration']
if remaining_iterations > 0:
# Create a new sample with current state
sample = checkpoint["sample"]
# Continue refinement loop
for i in range(checkpoint['iteration'] + 1, self.max_iterations + 1):
interrupted = checkpoint["callbacks"].get("check_interrupted", lambda: False)
if interrupted():
break
feedback = self._critic(
question=sample.text_input,
code=current_code,
symbols=current_symbols,
out=exec_out,
stdout=stdout,
err=err,
params=checkpoint["params"],
additional_rules=checkpoint["additional_rules"],
stream=checkpoint["stream"],
iteration=i,
callbacks=checkpoint["callbacks"],
)
fix_prompt = self._fix_prompt(sample.text_input, current_code, current_symbols, exec_out, stdout, err, feedback)
checkpoint["conv"].append({"role": "user", "content": fix_prompt})
refinement_prompt_details = {
"description": f"Solution refinement (iteration {i})",
"conversation": checkpoint["conv"]
}
step("refinement", f"Refining solution (iteration {i})...",
iteration=i, prompt_details=refinement_prompt_details)
raw = self._chat(checkpoint["conv"], checkpoint["params"], checkpoint["stream"],
iteration=i, callbacks=checkpoint["callbacks"])
checkpoint["logs"]["all_outputs"].append(raw)
checkpoint["conv"].append({"role": "assistant", "content": raw})
if "FINISHED" in raw:
break
new_symbols, new_code, reasoning = self._extract_components(raw)
if new_symbols:
current_symbols = new_symbols
checkpoint["logs"]["all_symbols"].append(new_symbols)
if new_code:
current_code = new_code
checkpoint["logs"]["all_programs"].append(new_code)
if reasoning:
checkpoint["logs"]["all_reasoning"].append(reasoning)
exec_out, stdout, err = self._run_code(current_symbols, current_code, i, checkpoint["callbacks"], checkpoint["logs"])
checkpoint["symbols"] = current_symbols
checkpoint["code"] = current_code
checkpoint["exec_out"] = exec_out
checkpoint["stdout"] = stdout
checkpoint["err"] = err
# Restore interactive mode
self.interactive = original_interactive
# Clear checkpoint
self._checkpoint = None
final = f"FINAL ANSWER: {exec_out}"
return final, checkpoint["logs"]
def merge_user_feedback(self, critic_feedback: str, accept_critic: bool,
quoted_ranges: List[Dict]) -> str:
"""
Merge critic feedback with user feedback.
Args:
critic_feedback: Original feedback from the critic
accept_critic: Whether to include critic's feedback
quoted_ranges: List of user feedback items (general comments, code feedback, symbol feedback)
Returns:
Merged feedback string
"""
feedback_parts = []
if accept_critic and critic_feedback:
feedback_parts.append("AI Critic's feedback:")
feedback_parts.append(critic_feedback)
if quoted_ranges:
# Separate general comments from specific code/symbol feedback
general_comments = []
specific_feedback = []
for item in quoted_ranges:
if not item.get("comment"):
continue
if item.get("type") == "general" or not item.get("text"):
general_comments.append(item["comment"])
else:
specific_feedback.append(item)
# Add general user comments
if general_comments:
feedback_parts.append("User feedback:")
feedback_parts.extend(general_comments)
# Add specific code/symbol feedback
if specific_feedback:
feedback_parts.append("Specific code feedback:")
for item in specific_feedback:
feedback_parts.append(f"Regarding: {item['text']}")
feedback_parts.append(f"Comment: {item['comment']}")
return "\n\n".join(feedback_parts) if feedback_parts else "No specific issues identified."
# ========= SMALL UTILITY HELPERS (private) =====================
def _run_code(
self,
symbols: Any,
code: str,
iteration: int,
callbacks: CbMap,
logs: Dict[str, Any],
) -> Tuple[str, str, str]:
"""Execute candidate code, emit callbacks, store logs, return (out, stdout, err)."""
on_exec_start = callbacks.get("on_code_execution_start", lambda *a, **k: None)
on_exec_end = callbacks.get("on_code_execution_end", lambda *a, **k: None)
on_exec = callbacks.get("on_code_execution", lambda *a, **k: None)
max_time = callbacks.get("get_max_execution_time", lambda: 10)()
on_exec_start(iteration)
try:
out, std, err = python_eval(
f"{code}\nsymbols = {str(symbols)}\nanswer = solve(symbols)",
max_execution_time=max_time,
)
except Exception as e:
out, std, err = "None", "", str(e)
on_exec_end(iteration)
on_exec(iteration, str(out), std, err)
logs.setdefault("execution_results", []).append({"output": out, "stdout": std, "error": err})
return str(out), std, err
# ---------------------------------------------------------------
def _critic(
self,
question: str,
code: str,
symbols: Any,
out: str,
stdout: str,
err: str,
params: SamplingParams,
additional_rules: str = "",
stream: bool = False,
iteration: int = 1,
callbacks: Optional[CbMap] = None,
) -> str:
"""Ask the model to critique the code once per iteration."""
system_content = f"""You will be given a question and a code solution and you must judge the quality of the code for solving the problem.
Look for any of the following issues in the code:
- The code should be input dependent, meaning it should use the input symbols to compute the answer. It is OK for the code to be specialized to the input (i.e. the reasoning itself may be hardcoded, like a decision tree where the branches are hardcoded).
- The code should not return None unless "None" is the correct answer.
- The code should return the answer, not just print it. If the question asks for a multiple choice answer, the code should return the choice as described in the question.
- There should not be any example usage of the code.
- If there is a simpler way to solve the problem, please describe it.
- If there are any clear bugs in the code which impact the correctness of the answer, please describe them.
- If there are any issues with the extracted symbols, please describe them as well, but separate these issues from the issues with the code.
- If it is possible to sanity check the output of the code, please do so and describe if there are any obvious issues with the output and how the code could be fixed to avoid these issues.
{"Additional issues and specifications to looks for: " if additional_rules else ""}
{additional_rules}
After analyzing the code in depth, output a concrete and concise summary of the issues that are present, do not include any code examples. Please order the issues by impact on answer correctness."""
user_content = f"""Question: {question}
The following are extracted symbols from the question in JSON format followed by a Python program which takes the JSON as an argument called `symbols` and computes the answer.
```json
{json.dumps(symbols, indent=2)}
```
```python
{code}
```
Code execution result:
```
Return value: {out}
Standard output: {stdout}
Exceptions: {err}
```
Output a concrete and concise summary of only the issues that are present, do not include any code examples.
"""
prompt = [
{"role": "system", "content": system_content},
{"role": "user", "content": user_content},
]
# Create prompt details for the critic
critic_prompt_details = {
"description": f"Code quality analysis and critique (iteration {iteration})",
"conversation": prompt
}
# Emit step update with critic prompt details
callbacks = callbacks or {}
step = callbacks.get("on_step_update", lambda *a, **k: None)
step("code_checking", f"Running code critic (iteration {iteration})...", iteration=iteration, prompt_details=critic_prompt_details)
if not stream:
# Non-streaming path (backward compatibility)
return self.critic_model.chat(prompt, sampling_params=params, use_tqdm=False)[0].outputs[0].text
# Streaming path for code reviewer
# Create specialized callbacks for code reviewer streaming
def _make_reviewer_callbacks():
on_start = callbacks.get("on_code_check_streaming_start", lambda *a, **k: None)
on_token = callbacks.get("on_code_check_streaming_token", lambda *a, **k: None)
on_end = callbacks.get("on_code_check_streaming_end", lambda *a, **k: None)
interrupted = callbacks.get("check_interrupted", lambda: False)
def _emit(tok: str):
if not interrupted():
on_token(tok, iteration, "AI Code Reviewer")
return on_start, on_token, on_end, _emit
on_start, on_token, on_end, _emit = _make_reviewer_callbacks()
# Start streaming
model_name = "AI Code Reviewer"
on_start(iteration, model_name)
# Call streaming method
if hasattr(self.critic_model, "stream_chat"):
resp = self.critic_model.stream_chat(
prompt,
sampling_params=params,
emit_callback=_emit,
)
else:
# Fallback to regular chat with simulated streaming
resp = self.critic_model.chat(prompt, sampling_params=params, use_tqdm=False)
on_end(iteration, model_name)
return resp[0].outputs[0].text
# ---------------------------------------------------------------
def _fix_prompt(
self, question, code, symbols, out, stdout, err, feedback, has_user_feedback=False
) -> str:
"""Return the prompt that asks the LLM to fix problems."""
base_prompt = f"""Please fix the issues with the code and symbols or output "FINISHED".
The following is the result of evaluating the above code with the extracted symbols.
```
Return value: {out}
Standard output: {stdout}
Exceptions: {err}
```
The following is the summary of issues found with the code or the extracted symbols by another model:
```
{feedback}
```
"""
if has_user_feedback:
emphasis = """
IMPORTANT: The feedback above includes specific user input that you MUST prioritize and address. Pay special attention to any user comments and requirements, as they represent critical guidance from the human user that should take precedence in your solution.
"""
base_prompt += emphasis
base_prompt += """
If there are any issues which impact the correctness of the answer, please output code which does not have the issues. Before outputting any code, plan how the code will solve the problem and avoid the issues.
If stuck, try outputting different code to solve the problem in a different way.
You may also revise the extracted symbols. To do this, output the revised symbols in a JSON code block. Only include information in the JSON which is present in the original input to keep the code grounded in the specific problem. Some examples of symbol revisions are changing the names of certain symbols, providing further granularity, and adding information which was originally missed.
If everything is correct, output the word "FINISHED" and nothing else.
"""
return base_prompt
|