Spaces:
Runtime error
Runtime error
Saiteja Solleti
commited on
Commit
·
1432cc9
1
Parent(s):
61bb151
UI level changes
Browse files- app.py +61 -32
- calculatescores.py +1 -1
- model.py +0 -12
app.py
CHANGED
|
@@ -11,7 +11,6 @@ from generationhelper import GenerateAnswer
|
|
| 11 |
from formatresultshelper import FormatAndScores
|
| 12 |
from calculatescores import CalculateScores
|
| 13 |
|
| 14 |
-
from model import generate_response
|
| 15 |
from huggingface_hub import login
|
| 16 |
from huggingface_hub import whoami
|
| 17 |
from huggingface_hub import dataset_info
|
|
@@ -33,50 +32,80 @@ login(hf_token)
|
|
| 33 |
rag_extracted_data = ExtractRagBenchData()
|
| 34 |
print(rag_extracted_data.head(5))
|
| 35 |
|
| 36 |
-
#invoke create milvus db function
|
| 37 |
-
try:
|
| 38 |
-
db_collection = CreateMilvusDbSchema()
|
| 39 |
-
except Exception as e:
|
| 40 |
-
print(f"Error creating Milvus DB schema: {e}")
|
| 41 |
-
|
| 42 |
-
#insert embdeding to milvus db
|
| 43 |
"""
|
| 44 |
EmbedAllDocumentsAndInsert(QUERY_EMBEDDING_MODEL, rag_extracted_data, db_collection, window_size=WINDOW_SIZE, overlap=OVERLAP)
|
| 45 |
"""
|
| 46 |
-
query = "what would the net revenue have been in 2015 if there wasn't a stipulated settlement from the business combination in october 2015?"
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
print(support_level)
|
| 61 |
-
print(completion_result)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
outputs="text",
|
| 79 |
-
title="Capstone Project Group 10")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 11 |
from formatresultshelper import FormatAndScores
|
| 12 |
from calculatescores import CalculateScores
|
| 13 |
|
|
|
|
| 14 |
from huggingface_hub import login
|
| 15 |
from huggingface_hub import whoami
|
| 16 |
from huggingface_hub import dataset_info
|
|
|
|
| 32 |
rag_extracted_data = ExtractRagBenchData()
|
| 33 |
print(rag_extracted_data.head(5))
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
"""
|
| 36 |
EmbedAllDocumentsAndInsert(QUERY_EMBEDDING_MODEL, rag_extracted_data, db_collection, window_size=WINDOW_SIZE, overlap=OVERLAP)
|
| 37 |
"""
|
|
|
|
| 38 |
|
| 39 |
+
def EvaluateRAGModel(query, evaluation_model):
|
| 40 |
+
#invoke create milvus db function
|
| 41 |
+
try:
|
| 42 |
+
db_collection = CreateMilvusDbSchema()
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error creating Milvus DB schema: {e}")
|
| 45 |
+
|
| 46 |
+
#insert embdeding to milvus db
|
| 47 |
+
|
| 48 |
+
#query = "what would the net revenue have been in 2015 if there wasn't a stipulated settlement from the business combination in october 2015?"
|
| 49 |
+
|
| 50 |
+
results_for_top10_chunks = SearchTopKDocuments(db_collection, query, QUERY_EMBEDDING_MODEL, top_k=RETRIVE_TOP_K_SIZE)
|
| 51 |
+
|
| 52 |
+
reranked_results = FineTuneAndRerankSearchResults(results_for_top10_chunks, rag_extracted_data, query, RERANKING_MODEL)
|
| 53 |
+
|
| 54 |
+
answer = GenerateAnswer(query, reranked_results.head(3), PROMPT_MODEL)
|
| 55 |
+
|
| 56 |
+
completion_result,relevant_sentence_keys,all_utilized_sentence_keys,support_keys,support_level = FormatAndScores(query, reranked_results.head(1), answer, EVAL_MODEL)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
print(relevant_sentence_keys)
|
| 60 |
+
print(all_utilized_sentence_keys)
|
| 61 |
+
print(support_keys)
|
| 62 |
+
print(support_level)
|
| 63 |
+
print(completion_result)
|
| 64 |
|
| 65 |
+
document_id = reranked_results.head(1)['doc_id'].values[0]
|
| 66 |
+
extarcted_row_for_given_id = rag_extracted_data[rag_extracted_data["id"]==document_id]
|
| 67 |
|
| 68 |
+
rmsecontextrel, rmsecontextutil, aucscore = CalculateScores(relevant_sentence_keys,all_utilized_sentence_keys,support_keys,support_level,extarcted_row_for_given_id)
|
| 69 |
|
| 70 |
+
print(rmsecontextrel)
|
| 71 |
+
print(rmsecontextutil)
|
| 72 |
+
print(aucscore)
|
| 73 |
|
| 74 |
|
| 75 |
+
# Create Gradio UI
|
| 76 |
+
with gr.Blocks() as iface:
|
| 77 |
+
gr.Markdown("## Capstone Project Group 10 - Model Evaluation")
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
with gr.Row():
|
| 80 |
+
question_input = gr.Textbox(label="Enter your Question", lines=2)
|
| 81 |
+
dropdown_input = gr.Dropdown(
|
| 82 |
+
["LLaMA 3.3", "Mistral &B", "Model C"],
|
| 83 |
+
value="LLaMA 3.3",
|
| 84 |
+
label="Select a Model"
|
| 85 |
+
)
|
| 86 |
|
| 87 |
+
submit_button = gr.Button("Evaluate Model")
|
| 88 |
|
| 89 |
+
with gr.Row():
|
| 90 |
+
with gr.Column():
|
| 91 |
+
gr.Markdown("### Output 1")
|
| 92 |
+
response = gr.Textbox(interactive=False, show_label=False, lines=2)
|
| 93 |
|
| 94 |
+
with gr.Row():
|
| 95 |
+
with gr.Column():
|
| 96 |
+
gr.Markdown("### Output 2")
|
| 97 |
+
output2 = gr.Textbox(interactive=False, show_label=False, lines=2)
|
| 98 |
+
|
| 99 |
+
with gr.Column():
|
| 100 |
+
gr.Markdown("### Output 3")
|
| 101 |
+
output3 = gr.Textbox(interactive=False, show_label=False, lines=2)
|
| 102 |
|
| 103 |
+
with gr.Column():
|
| 104 |
+
gr.Markdown("### Output 4")
|
| 105 |
+
output4 = gr.Textbox(interactive=False, show_label=False, lines=2)
|
| 106 |
|
| 107 |
+
# Connect submit button to evaluation function
|
| 108 |
+
submit_button.click(EvaluateRAGModel, inputs=[question_input, dropdown_input], outputs=[response, output2, output3, output4])
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
# Run the Gradio app
|
| 111 |
+
iface.launch()
|
calculatescores.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import formatresultshelper
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
-
from sklearn.metrics import
|
| 5 |
|
| 6 |
#Defined as utilized documents / retrieved documents for the query
|
| 7 |
def compute_context_relevance(relevant_sentences, support_keys):
|
|
|
|
| 1 |
import formatresultshelper
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
+
from sklearn.metrics import roc_auc_score
|
| 5 |
|
| 6 |
#Defined as utilized documents / retrieved documents for the query
|
| 7 |
def compute_context_relevance(relevant_sentences, support_keys):
|
model.py
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
from transformers import pipeline
|
| 2 |
-
|
| 3 |
-
def load_model():
|
| 4 |
-
"""Loads the model from Hugging Face."""
|
| 5 |
-
model = pipeline("text-generation", model="gpt2") # Replace with your model
|
| 6 |
-
return model
|
| 7 |
-
|
| 8 |
-
def generate_response(prompt):
|
| 9 |
-
"""Generates a response using the model."""
|
| 10 |
-
model = load_model()
|
| 11 |
-
response = model(prompt, max_length=100, do_sample=True)
|
| 12 |
-
return response[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|