Spaces:
Runtime error
Runtime error
Commit
Β·
17dd4b5
1
Parent(s):
672c7cb
First Commit
Browse files- DejaVuSansMono.ttf +0 -0
- app.py +553 -0
- conf/unet/config.json +36 -0
- images/hello_kitty_results.png +0 -0
- images/input.png +0 -0
- my_model/__init__.py +0 -0
- my_model/attention.py +664 -0
- my_model/unet_2d_blocks.py +1602 -0
- my_model/unet_2d_condition.py +355 -0
- requirements.txt +13 -0
- utils.py +76 -0
DejaVuSansMono.ttf
ADDED
|
Binary file (341 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 4 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler
|
| 5 |
+
from my_model import unet_2d_condition
|
| 6 |
+
import json
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
from functools import partial
|
| 10 |
+
import math
|
| 11 |
+
from utils import compute_ca_loss
|
| 12 |
+
from gradio import processing_utils
|
| 13 |
+
from typing import Optional
|
| 14 |
+
|
| 15 |
+
import warnings
|
| 16 |
+
|
| 17 |
+
import sys
|
| 18 |
+
|
| 19 |
+
sys.tracebacklimit = 0
|
| 20 |
+
|
| 21 |
+
class Blocks(gr.Blocks):
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
theme: str = "default",
|
| 26 |
+
analytics_enabled: Optional[bool] = None,
|
| 27 |
+
mode: str = "blocks",
|
| 28 |
+
title: str = "Gradio",
|
| 29 |
+
css: Optional[str] = None,
|
| 30 |
+
**kwargs,
|
| 31 |
+
):
|
| 32 |
+
self.extra_configs = {
|
| 33 |
+
'thumbnail': kwargs.pop('thumbnail', ''),
|
| 34 |
+
'url': kwargs.pop('url', 'https://gradio.app/'),
|
| 35 |
+
'creator': kwargs.pop('creator', '@teamGradio'),
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
|
| 39 |
+
warnings.filterwarnings("ignore")
|
| 40 |
+
|
| 41 |
+
def get_config_file(self):
|
| 42 |
+
config = super(Blocks, self).get_config_file()
|
| 43 |
+
|
| 44 |
+
for k, v in self.extra_configs.items():
|
| 45 |
+
config[k] = v
|
| 46 |
+
|
| 47 |
+
return config
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def draw_box(boxes=[], texts=[], img=None):
|
| 51 |
+
if len(boxes) == 0 and img is None:
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
if img is None:
|
| 55 |
+
img = Image.new('RGB', (512, 512), (255, 255, 255))
|
| 56 |
+
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
|
| 57 |
+
draw = ImageDraw.Draw(img)
|
| 58 |
+
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
|
| 59 |
+
print(boxes)
|
| 60 |
+
for bid, box in enumerate(boxes):
|
| 61 |
+
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
|
| 62 |
+
anno_text = texts[bid]
|
| 63 |
+
draw.rectangle(
|
| 64 |
+
[box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]],
|
| 65 |
+
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
|
| 66 |
+
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)], anno_text, font=font,
|
| 67 |
+
fill=(255, 255, 255))
|
| 68 |
+
return img
|
| 69 |
+
|
| 70 |
+
'''
|
| 71 |
+
inference model
|
| 72 |
+
'''
|
| 73 |
+
|
| 74 |
+
def inference(device, unet, vae, tokenizer, text_encoder, prompt, bboxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_index_step, rand_seed, guidance_scale):
|
| 75 |
+
uncond_input = tokenizer(
|
| 76 |
+
[""] * 1, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
| 77 |
+
)
|
| 78 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 79 |
+
|
| 80 |
+
input_ids = tokenizer(
|
| 81 |
+
prompt,
|
| 82 |
+
padding="max_length",
|
| 83 |
+
truncation=True,
|
| 84 |
+
max_length=tokenizer.model_max_length,
|
| 85 |
+
return_tensors="pt",
|
| 86 |
+
).input_ids[0].unsqueeze(0).to(device)
|
| 87 |
+
# text_embeddings = text_encoder(input_ids)[0]
|
| 88 |
+
text_embeddings = torch.cat([uncond_embeddings, text_encoder(input_ids)[0]])
|
| 89 |
+
# text_embeddings[1, 1, :] = text_embeddings[1, 2, :]
|
| 90 |
+
generator = torch.manual_seed(rand_seed) # Seed generator to create the inital latent noise
|
| 91 |
+
|
| 92 |
+
latents = torch.randn(
|
| 93 |
+
(batch_size, 4, 64, 64),
|
| 94 |
+
generator=generator,
|
| 95 |
+
).to(device)
|
| 96 |
+
|
| 97 |
+
noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 98 |
+
|
| 99 |
+
# generator = torch.Generator("cuda").manual_seed(1024)
|
| 100 |
+
noise_scheduler.set_timesteps(51)
|
| 101 |
+
|
| 102 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
| 103 |
+
|
| 104 |
+
loss = torch.tensor(10000)
|
| 105 |
+
|
| 106 |
+
for index, t in enumerate(noise_scheduler.timesteps):
|
| 107 |
+
iteration = 0
|
| 108 |
+
|
| 109 |
+
while loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step:
|
| 110 |
+
latents = latents.requires_grad_(True)
|
| 111 |
+
|
| 112 |
+
# latent_model_input = torch.cat([latents] * 2)
|
| 113 |
+
latent_model_input = latents
|
| 114 |
+
|
| 115 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
|
| 116 |
+
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
|
| 117 |
+
unet(latent_model_input, t, encoder_hidden_states=text_encoder(input_ids)[0])
|
| 118 |
+
|
| 119 |
+
# update latents with guidence from gaussian blob
|
| 120 |
+
|
| 121 |
+
loss = compute_ca_loss(attn_map_integrated_mid, attn_map_integrated_up, bboxes=bboxes,
|
| 122 |
+
object_positions=object_positions) * loss_scale
|
| 123 |
+
|
| 124 |
+
print(loss.item() / loss_scale)
|
| 125 |
+
|
| 126 |
+
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
|
| 127 |
+
|
| 128 |
+
latents = latents - grad_cond * noise_scheduler.sigmas[index] ** 2
|
| 129 |
+
iteration += 1
|
| 130 |
+
torch.cuda.empty_cache()
|
| 131 |
+
torch.cuda.empty_cache()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
|
| 136 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 137 |
+
|
| 138 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
|
| 139 |
+
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
|
| 140 |
+
unet(latent_model_input, t, encoder_hidden_states=text_embeddings)
|
| 141 |
+
|
| 142 |
+
noise_pred = noise_pred.sample
|
| 143 |
+
|
| 144 |
+
# perform classifier-free guidance
|
| 145 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 146 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 147 |
+
|
| 148 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 149 |
+
torch.cuda.empty_cache()
|
| 150 |
+
# Decode image
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
# print("decode image")
|
| 153 |
+
latents = 1 / 0.18215 * latents
|
| 154 |
+
image = vae.decode(latents).sample
|
| 155 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 156 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 157 |
+
images = (image * 255).round().astype("uint8")
|
| 158 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 159 |
+
return pil_images
|
| 160 |
+
|
| 161 |
+
def get_concat(ims):
|
| 162 |
+
if len(ims) == 1:
|
| 163 |
+
n_col = 1
|
| 164 |
+
else:
|
| 165 |
+
n_col = 2
|
| 166 |
+
n_row = math.ceil(len(ims) / 2)
|
| 167 |
+
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
|
| 168 |
+
for i, im in enumerate(ims):
|
| 169 |
+
row_id = i // n_col
|
| 170 |
+
col_id = i % n_col
|
| 171 |
+
dst.paste(im, (im.width * col_id, im.height * row_id))
|
| 172 |
+
return dst
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def generate(unet, vae, tokenizer, text_encoder, language_instruction, grounding_texts, sketch_pad,
|
| 176 |
+
loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter,
|
| 177 |
+
state):
|
| 178 |
+
if 'boxes' not in state:
|
| 179 |
+
state['boxes'] = []
|
| 180 |
+
boxes = state['boxes']
|
| 181 |
+
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
| 182 |
+
# assert len(boxes) == len(grounding_texts)
|
| 183 |
+
if len(boxes) != len(grounding_texts):
|
| 184 |
+
if len(boxes) < len(grounding_texts):
|
| 185 |
+
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
|
| 186 |
+
Number of boxes drawn: {}, number of grounding tokens: {}.
|
| 187 |
+
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
|
| 188 |
+
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
|
| 189 |
+
|
| 190 |
+
boxes = (np.asarray(boxes) / 512).tolist()
|
| 191 |
+
boxes = [[box] for box in boxes]
|
| 192 |
+
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
|
| 193 |
+
language_instruction_list = language_instruction.strip('.').split(' ')
|
| 194 |
+
object_positions = []
|
| 195 |
+
for obj in grounding_texts:
|
| 196 |
+
obj_position = []
|
| 197 |
+
for word in obj.split(' '):
|
| 198 |
+
obj_first_index = language_instruction_list.index(word) + 1
|
| 199 |
+
obj_position.append(obj_first_index)
|
| 200 |
+
object_positions.append(obj_position)
|
| 201 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 202 |
+
|
| 203 |
+
gen_images = inference(device, unet, vae, tokenizer, text_encoder, language_instruction, boxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_step, rand_seed, guidance_scale)
|
| 204 |
+
|
| 205 |
+
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
| 206 |
+
gen_images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(gen_images)] \
|
| 207 |
+
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
|
| 208 |
+
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
|
| 209 |
+
|
| 210 |
+
return gen_images + [state]
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def binarize(x):
|
| 214 |
+
return (x != 0).astype('uint8') * 255
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def sized_center_crop(img, cropx, cropy):
|
| 218 |
+
y, x = img.shape[:2]
|
| 219 |
+
startx = x // 2 - (cropx // 2)
|
| 220 |
+
starty = y // 2 - (cropy // 2)
|
| 221 |
+
return img[starty:starty + cropy, startx:startx + cropx]
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def sized_center_fill(img, fill, cropx, cropy):
|
| 225 |
+
y, x = img.shape[:2]
|
| 226 |
+
startx = x // 2 - (cropx // 2)
|
| 227 |
+
starty = y // 2 - (cropy // 2)
|
| 228 |
+
img[starty:starty + cropy, startx:startx + cropx] = fill
|
| 229 |
+
return img
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def sized_center_mask(img, cropx, cropy):
|
| 233 |
+
y, x = img.shape[:2]
|
| 234 |
+
startx = x // 2 - (cropx // 2)
|
| 235 |
+
starty = y // 2 - (cropy // 2)
|
| 236 |
+
center_region = img[starty:starty + cropy, startx:startx + cropx].copy()
|
| 237 |
+
img = (img * 0.2).astype('uint8')
|
| 238 |
+
img[starty:starty + cropy, startx:startx + cropx] = center_region
|
| 239 |
+
return img
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def center_crop(img, HW=None, tgt_size=(512, 512)):
|
| 243 |
+
if HW is None:
|
| 244 |
+
H, W = img.shape[:2]
|
| 245 |
+
HW = min(H, W)
|
| 246 |
+
img = sized_center_crop(img, HW, HW)
|
| 247 |
+
img = Image.fromarray(img)
|
| 248 |
+
img = img.resize(tgt_size)
|
| 249 |
+
return np.array(img)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def draw(input, grounding_texts, new_image_trigger, state):
|
| 253 |
+
if type(input) == dict:
|
| 254 |
+
image = input['image']
|
| 255 |
+
mask = input['mask']
|
| 256 |
+
else:
|
| 257 |
+
mask = input
|
| 258 |
+
if mask.ndim == 3:
|
| 259 |
+
mask = 255 - mask[..., 0]
|
| 260 |
+
|
| 261 |
+
image_scale = 1.0
|
| 262 |
+
|
| 263 |
+
mask = binarize(mask)
|
| 264 |
+
|
| 265 |
+
if type(mask) != np.ndarray:
|
| 266 |
+
mask = np.array(mask)
|
| 267 |
+
|
| 268 |
+
if mask.sum() == 0:
|
| 269 |
+
state = {}
|
| 270 |
+
|
| 271 |
+
image = None
|
| 272 |
+
|
| 273 |
+
if 'boxes' not in state:
|
| 274 |
+
state['boxes'] = []
|
| 275 |
+
|
| 276 |
+
if 'masks' not in state or len(state['masks']) == 0:
|
| 277 |
+
state['masks'] = []
|
| 278 |
+
last_mask = np.zeros_like(mask)
|
| 279 |
+
else:
|
| 280 |
+
last_mask = state['masks'][-1]
|
| 281 |
+
|
| 282 |
+
if type(mask) == np.ndarray and mask.size > 1:
|
| 283 |
+
diff_mask = mask - last_mask
|
| 284 |
+
else:
|
| 285 |
+
diff_mask = np.zeros([])
|
| 286 |
+
|
| 287 |
+
if diff_mask.sum() > 0:
|
| 288 |
+
x1x2 = np.where(diff_mask.max(0) != 0)[0]
|
| 289 |
+
y1y2 = np.where(diff_mask.max(1) != 0)[0]
|
| 290 |
+
y1, y2 = y1y2.min(), y1y2.max()
|
| 291 |
+
x1, x2 = x1x2.min(), x1x2.max()
|
| 292 |
+
|
| 293 |
+
if (x2 - x1 > 5) and (y2 - y1 > 5):
|
| 294 |
+
state['masks'].append(mask.copy())
|
| 295 |
+
state['boxes'].append((x1, y1, x2, y2))
|
| 296 |
+
|
| 297 |
+
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
| 298 |
+
grounding_texts = [x for x in grounding_texts if len(x) > 0]
|
| 299 |
+
if len(grounding_texts) < len(state['boxes']):
|
| 300 |
+
grounding_texts += [f'Obj. {bid + 1}' for bid in range(len(grounding_texts), len(state['boxes']))]
|
| 301 |
+
box_image = draw_box(state['boxes'], grounding_texts, image)
|
| 302 |
+
|
| 303 |
+
return [box_image, new_image_trigger, image_scale, state]
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
|
| 307 |
+
if task != 'Grounded Inpainting':
|
| 308 |
+
sketch_pad_trigger = sketch_pad_trigger + 1
|
| 309 |
+
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
| 310 |
+
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)]
|
| 311 |
+
# state = {}
|
| 312 |
+
return [None, sketch_pad_trigger, None, 1.0] + out_images + [{}]
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def main():
|
| 316 |
+
|
| 317 |
+
css = """
|
| 318 |
+
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
|
| 319 |
+
{
|
| 320 |
+
height: var(--height) !important;
|
| 321 |
+
max-height: var(--height) !important;
|
| 322 |
+
min-height: var(--height) !important;
|
| 323 |
+
}
|
| 324 |
+
#paper-info a {
|
| 325 |
+
color:#008AD7;
|
| 326 |
+
text-decoration: none;
|
| 327 |
+
}
|
| 328 |
+
#paper-info a:hover {
|
| 329 |
+
cursor: pointer;
|
| 330 |
+
text-decoration: none;
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
.tooltip {
|
| 334 |
+
color: #555;
|
| 335 |
+
position: relative;
|
| 336 |
+
display: inline-block;
|
| 337 |
+
cursor: pointer;
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
.tooltip .tooltiptext {
|
| 341 |
+
visibility: hidden;
|
| 342 |
+
width: 400px;
|
| 343 |
+
background-color: #555;
|
| 344 |
+
color: #fff;
|
| 345 |
+
text-align: center;
|
| 346 |
+
padding: 5px;
|
| 347 |
+
border-radius: 5px;
|
| 348 |
+
position: absolute;
|
| 349 |
+
z-index: 1; /* Set z-index to 1 */
|
| 350 |
+
left: 10px;
|
| 351 |
+
top: 100%;
|
| 352 |
+
opacity: 0;
|
| 353 |
+
transition: opacity 0.3s;
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
.tooltip:hover .tooltiptext {
|
| 357 |
+
visibility: visible;
|
| 358 |
+
opacity: 1;
|
| 359 |
+
z-index: 9999; /* Set a high z-index value when hovering */
|
| 360 |
+
}
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
"""
|
| 364 |
+
|
| 365 |
+
rescale_js = """
|
| 366 |
+
function(x) {
|
| 367 |
+
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
|
| 368 |
+
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
|
| 369 |
+
const image_width = root.querySelector('#img2img_image').clientWidth;
|
| 370 |
+
const target_height = parseInt(image_width * image_scale);
|
| 371 |
+
document.body.style.setProperty('--height', `${target_height}px`);
|
| 372 |
+
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
|
| 373 |
+
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
|
| 374 |
+
return x;
|
| 375 |
+
}
|
| 376 |
+
"""
|
| 377 |
+
with open('./conf/unet/config.json') as f:
|
| 378 |
+
unet_config = json.load(f)
|
| 379 |
+
|
| 380 |
+
unet = unet_2d_condition.UNet2DConditionModel(**unet_config).from_pretrained('runwayml/stable-diffusion-v1-5',
|
| 381 |
+
subfolder="unet")
|
| 382 |
+
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
| 383 |
+
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
|
| 384 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
| 385 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 386 |
+
unet.to(device)
|
| 387 |
+
text_encoder.to(device)
|
| 388 |
+
vae.to(device)
|
| 389 |
+
|
| 390 |
+
with Blocks(
|
| 391 |
+
css=css,
|
| 392 |
+
analytics_enabled=False,
|
| 393 |
+
title="Layout-Guidance demo",
|
| 394 |
+
) as demo:
|
| 395 |
+
description = """<p style="text-align: center; font-weight: bold;">
|
| 396 |
+
<span style="font-size: 28px">Layout Guidance</span>
|
| 397 |
+
<br>
|
| 398 |
+
<span style="font-size: 18px" id="paper-info">
|
| 399 |
+
[<a href=" " target="_blank">Project Page</a>]
|
| 400 |
+
[<a href=" " target="_blank">Paper</a>]
|
| 401 |
+
[<a href=" " target="_blank">GitHub</a>]
|
| 402 |
+
</span>
|
| 403 |
+
</p>
|
| 404 |
+
"""
|
| 405 |
+
gr.HTML(description)
|
| 406 |
+
with gr.Column():
|
| 407 |
+
language_instruction = gr.Textbox(
|
| 408 |
+
label="Text Prompt",
|
| 409 |
+
)
|
| 410 |
+
grounding_instruction = gr.Textbox(
|
| 411 |
+
label="Grounding instruction (Separated by semicolon)",
|
| 412 |
+
)
|
| 413 |
+
sketch_pad_trigger = gr.Number(value=0, visible=False)
|
| 414 |
+
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
|
| 415 |
+
init_white_trigger = gr.Number(value=0, visible=False)
|
| 416 |
+
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
|
| 417 |
+
new_image_trigger = gr.Number(value=0, visible=False)
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
with gr.Row():
|
| 421 |
+
sketch_pad = gr.Paint(label="Sketch Pad", elem_id="img2img_image", source='canvas', shape=(512, 512))
|
| 422 |
+
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
|
| 423 |
+
out_gen_1 = gr.Image(type="pil", visible=True, label="Generated Image")
|
| 424 |
+
|
| 425 |
+
with gr.Row():
|
| 426 |
+
clear_btn = gr.Button(value='Clear')
|
| 427 |
+
gen_btn = gr.Button(value='Generate')
|
| 428 |
+
|
| 429 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 430 |
+
with gr.Column():
|
| 431 |
+
description = """<div class="tooltip">Loss Scale Factor ⓘ
|
| 432 |
+
<span class="tooltiptext">The scale factor of the backward guidance loss. The larger it is, the better control we get while it sometimes losses fidelity. </span>
|
| 433 |
+
</div>
|
| 434 |
+
<div class="tooltip">Guidance Scale ⓘ
|
| 435 |
+
<span class="tooltiptext">The scale factor of classifier-free guidance. </span>
|
| 436 |
+
</div>
|
| 437 |
+
<div class="tooltip" >Max Iteration per Step ⓘ
|
| 438 |
+
<span class="tooltiptext">The max iterations of backward guidance in each diffusion inference process.</span>
|
| 439 |
+
</div>
|
| 440 |
+
<div class="tooltip" >Loss Threshold ⓘ
|
| 441 |
+
<span class="tooltiptext">The threshold of loss. If the loss computed by cross-attention map is smaller then the threshold, the backward guidance is stopped. </span>
|
| 442 |
+
</div>
|
| 443 |
+
<div class="tooltip" >Max Step of Backward Guidance ⓘ
|
| 444 |
+
<span class="tooltiptext">The max steps of backward guidance in diffusion inference process.</span>
|
| 445 |
+
</div>
|
| 446 |
+
"""
|
| 447 |
+
gr.HTML(description)
|
| 448 |
+
Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,label="Loss Scale Factor")
|
| 449 |
+
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
|
| 450 |
+
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False)
|
| 451 |
+
max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step")
|
| 452 |
+
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold")
|
| 453 |
+
max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance")
|
| 454 |
+
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
|
| 455 |
+
|
| 456 |
+
state = gr.State({})
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
class Controller:
|
| 460 |
+
def __init__(self):
|
| 461 |
+
self.calls = 0
|
| 462 |
+
self.tracks = 0
|
| 463 |
+
self.resizes = 0
|
| 464 |
+
self.scales = 0
|
| 465 |
+
|
| 466 |
+
def init_white(self, init_white_trigger):
|
| 467 |
+
self.calls += 1
|
| 468 |
+
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger + 1
|
| 469 |
+
|
| 470 |
+
def change_n_samples(self, n_samples):
|
| 471 |
+
blank_samples = n_samples % 2 if n_samples > 1 else 0
|
| 472 |
+
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
|
| 473 |
+
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
controller = Controller()
|
| 477 |
+
demo.load(
|
| 478 |
+
lambda x: x + 1,
|
| 479 |
+
inputs=sketch_pad_trigger,
|
| 480 |
+
outputs=sketch_pad_trigger,
|
| 481 |
+
queue=False)
|
| 482 |
+
sketch_pad.edit(
|
| 483 |
+
draw,
|
| 484 |
+
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
| 485 |
+
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
| 486 |
+
queue=False,
|
| 487 |
+
)
|
| 488 |
+
grounding_instruction.change(
|
| 489 |
+
draw,
|
| 490 |
+
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
| 491 |
+
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
| 492 |
+
queue=False,
|
| 493 |
+
)
|
| 494 |
+
clear_btn.click(
|
| 495 |
+
clear,
|
| 496 |
+
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
|
| 497 |
+
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, state],
|
| 498 |
+
queue=False)
|
| 499 |
+
|
| 500 |
+
sketch_pad_trigger.change(
|
| 501 |
+
controller.init_white,
|
| 502 |
+
inputs=[init_white_trigger],
|
| 503 |
+
outputs=[sketch_pad, image_scale, init_white_trigger],
|
| 504 |
+
queue=False)
|
| 505 |
+
|
| 506 |
+
gen_btn.click(
|
| 507 |
+
fn=partial(generate, unet, vae, tokenizer, text_encoder),
|
| 508 |
+
inputs=[
|
| 509 |
+
language_instruction, grounding_instruction, sketch_pad,
|
| 510 |
+
loss_threshold, guidance_scale, batch_size, rand_seed,
|
| 511 |
+
max_step,
|
| 512 |
+
Loss_scale, max_iter,
|
| 513 |
+
state,
|
| 514 |
+
],
|
| 515 |
+
outputs=[out_gen_1, state],
|
| 516 |
+
queue=True
|
| 517 |
+
)
|
| 518 |
+
sketch_pad_resize_trigger.change(
|
| 519 |
+
None,
|
| 520 |
+
None,
|
| 521 |
+
sketch_pad_resize_trigger,
|
| 522 |
+
_js=rescale_js,
|
| 523 |
+
queue=False)
|
| 524 |
+
init_white_trigger.change(
|
| 525 |
+
None,
|
| 526 |
+
None,
|
| 527 |
+
init_white_trigger,
|
| 528 |
+
_js=rescale_js,
|
| 529 |
+
queue=False)
|
| 530 |
+
|
| 531 |
+
with gr.Column():
|
| 532 |
+
gr.Examples(
|
| 533 |
+
examples=[
|
| 534 |
+
[
|
| 535 |
+
# "images/input.png",
|
| 536 |
+
"A hello kitty toy is playing with a purple ball.",
|
| 537 |
+
"hello kitty;ball",
|
| 538 |
+
"images/hello_kitty_results.png"
|
| 539 |
+
],
|
| 540 |
+
],
|
| 541 |
+
inputs=[language_instruction, grounding_instruction, out_gen_1],
|
| 542 |
+
outputs=None,
|
| 543 |
+
fn=None,
|
| 544 |
+
cache_examples=False,
|
| 545 |
+
)
|
| 546 |
+
description = """<p> The source codes of the demo are modified based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GlIGen</a>. Thanks! </p>"""
|
| 547 |
+
gr.HTML(description)
|
| 548 |
+
|
| 549 |
+
demo.queue(concurrency_count=1, api_open=False)
|
| 550 |
+
demo.launch(share=False, show_api=False, show_error=True)
|
| 551 |
+
|
| 552 |
+
if __name__ == '__main__':
|
| 553 |
+
main()
|
conf/unet/config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "UNet2DConditionModel",
|
| 3 |
+
"_diffusers_version": "0.6.0",
|
| 4 |
+
"act_fn": "silu",
|
| 5 |
+
"attention_head_dim": 8,
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
320,
|
| 8 |
+
640,
|
| 9 |
+
1280,
|
| 10 |
+
1280
|
| 11 |
+
],
|
| 12 |
+
"center_input_sample": false,
|
| 13 |
+
"cross_attention_dim": 768,
|
| 14 |
+
"down_block_types": [
|
| 15 |
+
"CrossAttnDownBlock2D",
|
| 16 |
+
"CrossAttnDownBlock2D",
|
| 17 |
+
"CrossAttnDownBlock2D",
|
| 18 |
+
"DownBlock2D"
|
| 19 |
+
],
|
| 20 |
+
"downsample_padding": 1,
|
| 21 |
+
"flip_sin_to_cos": true,
|
| 22 |
+
"freq_shift": 0,
|
| 23 |
+
"in_channels": 4,
|
| 24 |
+
"layers_per_block": 2,
|
| 25 |
+
"mid_block_scale_factor": 1,
|
| 26 |
+
"norm_eps": 1e-05,
|
| 27 |
+
"norm_num_groups": 32,
|
| 28 |
+
"out_channels": 4,
|
| 29 |
+
"sample_size": 64,
|
| 30 |
+
"up_block_types": [
|
| 31 |
+
"UpBlock2D",
|
| 32 |
+
"CrossAttnUpBlock2D",
|
| 33 |
+
"CrossAttnUpBlock2D",
|
| 34 |
+
"CrossAttnUpBlock2D"
|
| 35 |
+
]
|
| 36 |
+
}
|
images/hello_kitty_results.png
ADDED
|
images/input.png
ADDED
|
my_model/__init__.py
ADDED
|
File without changes
|
my_model/attention.py
ADDED
|
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import math
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Optional
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from diffusers.modeling_utils import ModelMixin
|
| 24 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
| 25 |
+
from diffusers.utils import BaseOutput
|
| 26 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 27 |
+
|
| 28 |
+
@dataclass
|
| 29 |
+
class Transformer2DModelOutput(BaseOutput):
|
| 30 |
+
"""
|
| 31 |
+
Args:
|
| 32 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
| 33 |
+
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
|
| 34 |
+
for the unnoised latent pixels.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
sample: torch.FloatTensor
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if is_xformers_available():
|
| 41 |
+
import xformers
|
| 42 |
+
import xformers.ops
|
| 43 |
+
else:
|
| 44 |
+
xformers = None
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
| 48 |
+
"""
|
| 49 |
+
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
|
| 50 |
+
embeddings) inputs_coarse.
|
| 51 |
+
|
| 52 |
+
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
|
| 53 |
+
transformer action. Finally, reshape to image.
|
| 54 |
+
|
| 55 |
+
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
|
| 56 |
+
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
|
| 57 |
+
classes of unnoised image.
|
| 58 |
+
|
| 59 |
+
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
|
| 60 |
+
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
|
| 61 |
+
|
| 62 |
+
Parameters:
|
| 63 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 64 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 65 |
+
in_channels (`int`, *optional*):
|
| 66 |
+
Pass if the input is continuous. The number of channels in the input and output.
|
| 67 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 68 |
+
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
| 69 |
+
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
|
| 70 |
+
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
| 71 |
+
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
| 72 |
+
`ImagePositionalEmbeddings`.
|
| 73 |
+
num_vector_embeds (`int`, *optional*):
|
| 74 |
+
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
| 75 |
+
Includes the class for the masked latent pixel.
|
| 76 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 77 |
+
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
| 78 |
+
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
| 79 |
+
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
| 80 |
+
up to but not more than steps than `num_embeds_ada_norm`.
|
| 81 |
+
attention_bias (`bool`, *optional*):
|
| 82 |
+
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
@register_to_config
|
| 86 |
+
def __init__(
|
| 87 |
+
self,
|
| 88 |
+
num_attention_heads: int = 16,
|
| 89 |
+
attention_head_dim: int = 88,
|
| 90 |
+
in_channels: Optional[int] = None,
|
| 91 |
+
num_layers: int = 1,
|
| 92 |
+
dropout: float = 0.0,
|
| 93 |
+
norm_num_groups: int = 32,
|
| 94 |
+
cross_attention_dim: Optional[int] = None,
|
| 95 |
+
attention_bias: bool = False,
|
| 96 |
+
sample_size: Optional[int] = None,
|
| 97 |
+
num_vector_embeds: Optional[int] = None,
|
| 98 |
+
activation_fn: str = "geglu",
|
| 99 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 100 |
+
):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.num_attention_heads = num_attention_heads
|
| 103 |
+
self.attention_head_dim = attention_head_dim
|
| 104 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 105 |
+
|
| 106 |
+
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
| 107 |
+
# Define whether input is continuous or discrete depending on configuration
|
| 108 |
+
self.is_input_continuous = in_channels is not None
|
| 109 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
| 110 |
+
|
| 111 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
| 112 |
+
raise ValueError(
|
| 113 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
| 114 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
| 115 |
+
)
|
| 116 |
+
elif not self.is_input_continuous and not self.is_input_vectorized:
|
| 117 |
+
raise ValueError(
|
| 118 |
+
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
|
| 119 |
+
" sure that either `in_channels` or `num_vector_embeds` is not None."
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# 2. Define input layers
|
| 123 |
+
if self.is_input_continuous:
|
| 124 |
+
self.in_channels = in_channels
|
| 125 |
+
|
| 126 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 127 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
| 128 |
+
elif self.is_input_vectorized:
|
| 129 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
| 130 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
| 131 |
+
|
| 132 |
+
self.height = sample_size
|
| 133 |
+
self.width = sample_size
|
| 134 |
+
self.num_vector_embeds = num_vector_embeds
|
| 135 |
+
self.num_latent_pixels = self.height * self.width
|
| 136 |
+
|
| 137 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
| 138 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# 3. Define transformers blocks
|
| 142 |
+
self.transformer_blocks = nn.ModuleList(
|
| 143 |
+
[
|
| 144 |
+
BasicTransformerBlock(
|
| 145 |
+
inner_dim,
|
| 146 |
+
num_attention_heads,
|
| 147 |
+
attention_head_dim,
|
| 148 |
+
dropout=dropout,
|
| 149 |
+
cross_attention_dim=cross_attention_dim,
|
| 150 |
+
activation_fn=activation_fn,
|
| 151 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 152 |
+
attention_bias=attention_bias,
|
| 153 |
+
)
|
| 154 |
+
for d in range(num_layers)
|
| 155 |
+
]
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# 4. Define output layers
|
| 159 |
+
if self.is_input_continuous:
|
| 160 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 161 |
+
elif self.is_input_vectorized:
|
| 162 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
| 163 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
| 164 |
+
|
| 165 |
+
def _set_attention_slice(self, slice_size):
|
| 166 |
+
for block in self.transformer_blocks:
|
| 167 |
+
block._set_attention_slice(slice_size)
|
| 168 |
+
|
| 169 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attn_map=None, attn_shift=False, obj_ids=None, relationship=None, return_dict: bool = True):
|
| 170 |
+
"""
|
| 171 |
+
Args:
|
| 172 |
+
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
| 173 |
+
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
| 174 |
+
hidden_states
|
| 175 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
|
| 176 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 177 |
+
self-attention.
|
| 178 |
+
timestep ( `torch.long`, *optional*):
|
| 179 |
+
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
| 180 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 181 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
| 182 |
+
|
| 183 |
+
Returns:
|
| 184 |
+
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
|
| 185 |
+
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
|
| 186 |
+
tensor.
|
| 187 |
+
"""
|
| 188 |
+
# 1. Input
|
| 189 |
+
if self.is_input_continuous:
|
| 190 |
+
batch, channel, height, weight = hidden_states.shape
|
| 191 |
+
residual = hidden_states
|
| 192 |
+
hidden_states = self.norm(hidden_states)
|
| 193 |
+
hidden_states = self.proj_in(hidden_states)
|
| 194 |
+
inner_dim = hidden_states.shape[1]
|
| 195 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
| 196 |
+
elif self.is_input_vectorized:
|
| 197 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
| 198 |
+
|
| 199 |
+
# 2. Blocks
|
| 200 |
+
for block in self.transformer_blocks:
|
| 201 |
+
hidden_states, cross_attn_prob = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
|
| 202 |
+
|
| 203 |
+
# 3. Output
|
| 204 |
+
if self.is_input_continuous:
|
| 205 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
|
| 206 |
+
hidden_states = self.proj_out(hidden_states)
|
| 207 |
+
output = hidden_states + residual
|
| 208 |
+
elif self.is_input_vectorized:
|
| 209 |
+
hidden_states = self.norm_out(hidden_states)
|
| 210 |
+
logits = self.out(hidden_states)
|
| 211 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
| 212 |
+
logits = logits.permute(0, 2, 1)
|
| 213 |
+
|
| 214 |
+
# log(p(x_0))
|
| 215 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
| 216 |
+
|
| 217 |
+
if not return_dict:
|
| 218 |
+
return (output,)
|
| 219 |
+
|
| 220 |
+
return Transformer2DModelOutput(sample=output), cross_attn_prob
|
| 221 |
+
|
| 222 |
+
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 223 |
+
for block in self.transformer_blocks:
|
| 224 |
+
block._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class AttentionBlock(nn.Module):
|
| 228 |
+
"""
|
| 229 |
+
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
| 230 |
+
to the N-d case.
|
| 231 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 232 |
+
Uses three q, k, v linear layers to compute attention.
|
| 233 |
+
|
| 234 |
+
Parameters:
|
| 235 |
+
channels (`int`): The number of channels in the input and output.
|
| 236 |
+
num_head_channels (`int`, *optional*):
|
| 237 |
+
The number of channels in each head. If None, then `num_heads` = 1.
|
| 238 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
|
| 239 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
|
| 240 |
+
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
def __init__(
|
| 244 |
+
self,
|
| 245 |
+
channels: int,
|
| 246 |
+
num_head_channels: Optional[int] = None,
|
| 247 |
+
norm_num_groups: int = 32,
|
| 248 |
+
rescale_output_factor: float = 1.0,
|
| 249 |
+
eps: float = 1e-5,
|
| 250 |
+
):
|
| 251 |
+
super().__init__()
|
| 252 |
+
self.channels = channels
|
| 253 |
+
|
| 254 |
+
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
|
| 255 |
+
self.num_head_size = num_head_channels
|
| 256 |
+
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
|
| 257 |
+
|
| 258 |
+
# define q,k,v as linear layers
|
| 259 |
+
self.query = nn.Linear(channels, channels)
|
| 260 |
+
self.key = nn.Linear(channels, channels)
|
| 261 |
+
self.value = nn.Linear(channels, channels)
|
| 262 |
+
|
| 263 |
+
self.rescale_output_factor = rescale_output_factor
|
| 264 |
+
self.proj_attn = nn.Linear(channels, channels, 1)
|
| 265 |
+
|
| 266 |
+
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
|
| 267 |
+
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
|
| 268 |
+
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
| 269 |
+
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
|
| 270 |
+
return new_projection
|
| 271 |
+
|
| 272 |
+
def forward(self, hidden_states):
|
| 273 |
+
residual = hidden_states
|
| 274 |
+
batch, channel, height, width = hidden_states.shape
|
| 275 |
+
|
| 276 |
+
# norm
|
| 277 |
+
hidden_states = self.group_norm(hidden_states)
|
| 278 |
+
|
| 279 |
+
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
|
| 280 |
+
|
| 281 |
+
# proj to q, k, v
|
| 282 |
+
query_proj = self.query(hidden_states)
|
| 283 |
+
key_proj = self.key(hidden_states)
|
| 284 |
+
value_proj = self.value(hidden_states)
|
| 285 |
+
|
| 286 |
+
# transpose
|
| 287 |
+
query_states = self.transpose_for_scores(query_proj)
|
| 288 |
+
key_states = self.transpose_for_scores(key_proj)
|
| 289 |
+
value_states = self.transpose_for_scores(value_proj)
|
| 290 |
+
|
| 291 |
+
# get scores
|
| 292 |
+
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
|
| 293 |
+
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) # TODO: use baddmm
|
| 294 |
+
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
|
| 295 |
+
|
| 296 |
+
# compute attention output
|
| 297 |
+
hidden_states = torch.matmul(attention_probs, value_states)
|
| 298 |
+
|
| 299 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
|
| 300 |
+
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
|
| 301 |
+
hidden_states = hidden_states.view(new_hidden_states_shape)
|
| 302 |
+
|
| 303 |
+
# compute next hidden_states
|
| 304 |
+
hidden_states = self.proj_attn(hidden_states)
|
| 305 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
|
| 306 |
+
|
| 307 |
+
# res connect and rescale
|
| 308 |
+
hidden_states = (hidden_states + residual) / self.rescale_output_factor
|
| 309 |
+
return hidden_states
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class BasicTransformerBlock(nn.Module):
|
| 313 |
+
r"""
|
| 314 |
+
A basic Transformer block.
|
| 315 |
+
|
| 316 |
+
Parameters:
|
| 317 |
+
dim (`int`): The number of channels in the input and output.
|
| 318 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 319 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 320 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 321 |
+
cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
|
| 322 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 323 |
+
num_embeds_ada_norm (:
|
| 324 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
| 325 |
+
attention_bias (:
|
| 326 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
| 327 |
+
"""
|
| 328 |
+
|
| 329 |
+
def __init__(
|
| 330 |
+
self,
|
| 331 |
+
dim: int,
|
| 332 |
+
num_attention_heads: int,
|
| 333 |
+
attention_head_dim: int,
|
| 334 |
+
dropout=0.0,
|
| 335 |
+
cross_attention_dim: Optional[int] = None,
|
| 336 |
+
activation_fn: str = "geglu",
|
| 337 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 338 |
+
attention_bias: bool = False,
|
| 339 |
+
):
|
| 340 |
+
super().__init__()
|
| 341 |
+
self.attn1 = CrossAttention(
|
| 342 |
+
query_dim=dim,
|
| 343 |
+
heads=num_attention_heads,
|
| 344 |
+
dim_head=attention_head_dim,
|
| 345 |
+
dropout=dropout,
|
| 346 |
+
bias=attention_bias,
|
| 347 |
+
) # is a self-attention
|
| 348 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 349 |
+
self.attn2 = CrossAttention(
|
| 350 |
+
query_dim=dim,
|
| 351 |
+
cross_attention_dim=cross_attention_dim,
|
| 352 |
+
heads=num_attention_heads,
|
| 353 |
+
dim_head=attention_head_dim,
|
| 354 |
+
dropout=dropout,
|
| 355 |
+
bias=attention_bias,
|
| 356 |
+
) # is self-attn if context is none
|
| 357 |
+
|
| 358 |
+
# layer norms
|
| 359 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
| 360 |
+
if self.use_ada_layer_norm:
|
| 361 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 362 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 363 |
+
else:
|
| 364 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 365 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 366 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 367 |
+
|
| 368 |
+
def _set_attention_slice(self, slice_size):
|
| 369 |
+
self.attn1._slice_size = slice_size
|
| 370 |
+
self.attn2._slice_size = slice_size
|
| 371 |
+
|
| 372 |
+
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 373 |
+
if not is_xformers_available():
|
| 374 |
+
print("Here is how to install it")
|
| 375 |
+
raise ModuleNotFoundError(
|
| 376 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
| 377 |
+
" xformers",
|
| 378 |
+
name="xformers",
|
| 379 |
+
)
|
| 380 |
+
elif not torch.cuda.is_available():
|
| 381 |
+
raise ValueError(
|
| 382 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
| 383 |
+
" available for GPU "
|
| 384 |
+
)
|
| 385 |
+
else:
|
| 386 |
+
try:
|
| 387 |
+
# Make sure we can run the memory efficient attention
|
| 388 |
+
_ = xformers.ops.memory_efficient_attention(
|
| 389 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 390 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 391 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 392 |
+
)
|
| 393 |
+
except Exception as e:
|
| 394 |
+
raise e
|
| 395 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
| 396 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
| 397 |
+
|
| 398 |
+
def forward(self, hidden_states, context=None, timestep=None):
|
| 399 |
+
# 1. Self-Attention
|
| 400 |
+
norm_hidden_states = (
|
| 401 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
| 402 |
+
)
|
| 403 |
+
tmp_hidden_states, cross_attn_prob = self.attn1(norm_hidden_states)
|
| 404 |
+
hidden_states = tmp_hidden_states + hidden_states
|
| 405 |
+
|
| 406 |
+
# 2. Cross-Attention
|
| 407 |
+
norm_hidden_states = (
|
| 408 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
| 409 |
+
)
|
| 410 |
+
tmp_hidden_states, cross_attn_prob = self.attn2(norm_hidden_states, context=context)
|
| 411 |
+
hidden_states = tmp_hidden_states + hidden_states
|
| 412 |
+
|
| 413 |
+
# 3. Feed-forward
|
| 414 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 415 |
+
|
| 416 |
+
return hidden_states, cross_attn_prob
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
class CrossAttention(nn.Module):
|
| 420 |
+
r"""
|
| 421 |
+
A cross attention layer.
|
| 422 |
+
|
| 423 |
+
Parameters:
|
| 424 |
+
query_dim (`int`): The number of channels in the query.
|
| 425 |
+
cross_attention_dim (`int`, *optional*):
|
| 426 |
+
The number of channels in the context. If not given, defaults to `query_dim`.
|
| 427 |
+
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
| 428 |
+
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 429 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 430 |
+
bias (`bool`, *optional*, defaults to False):
|
| 431 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
| 432 |
+
"""
|
| 433 |
+
|
| 434 |
+
def __init__(
|
| 435 |
+
self,
|
| 436 |
+
query_dim: int,
|
| 437 |
+
cross_attention_dim: Optional[int] = None,
|
| 438 |
+
heads: int = 8,
|
| 439 |
+
dim_head: int = 64,
|
| 440 |
+
dropout: float = 0.0,
|
| 441 |
+
bias=False,
|
| 442 |
+
):
|
| 443 |
+
super().__init__()
|
| 444 |
+
inner_dim = dim_head * heads
|
| 445 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
| 446 |
+
|
| 447 |
+
self.scale = dim_head**-0.5
|
| 448 |
+
self.heads = heads
|
| 449 |
+
# for slice_size > 0 the attention score computation
|
| 450 |
+
# is split across the batch axis to save memory
|
| 451 |
+
# You can set slice_size with `set_attention_slice`
|
| 452 |
+
self._slice_size = None
|
| 453 |
+
self._use_memory_efficient_attention_xformers = False
|
| 454 |
+
|
| 455 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
|
| 456 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
| 457 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
| 458 |
+
|
| 459 |
+
self.to_out = nn.ModuleList([])
|
| 460 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
| 461 |
+
self.to_out.append(nn.Dropout(dropout))
|
| 462 |
+
|
| 463 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
| 464 |
+
batch_size, seq_len, dim = tensor.shape
|
| 465 |
+
head_size = self.heads
|
| 466 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
| 467 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
| 468 |
+
return tensor
|
| 469 |
+
|
| 470 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
| 471 |
+
batch_size, seq_len, dim = tensor.shape
|
| 472 |
+
head_size = self.heads
|
| 473 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
| 474 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
| 475 |
+
return tensor
|
| 476 |
+
|
| 477 |
+
def forward(self, hidden_states, context=None, mask=None):
|
| 478 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
| 479 |
+
|
| 480 |
+
query = self.to_q(hidden_states)
|
| 481 |
+
context = context if context is not None else hidden_states
|
| 482 |
+
key = self.to_k(context)
|
| 483 |
+
value = self.to_v(context)
|
| 484 |
+
|
| 485 |
+
dim = query.shape[-1]
|
| 486 |
+
|
| 487 |
+
query = self.reshape_heads_to_batch_dim(query)
|
| 488 |
+
key = self.reshape_heads_to_batch_dim(key)
|
| 489 |
+
value = self.reshape_heads_to_batch_dim(value)
|
| 490 |
+
|
| 491 |
+
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
| 492 |
+
|
| 493 |
+
# attention, what we cannot get enough of
|
| 494 |
+
if self._use_memory_efficient_attention_xformers:
|
| 495 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value)
|
| 496 |
+
else:
|
| 497 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
| 498 |
+
hidden_states, attention_probs = self._attention(query, key, value)
|
| 499 |
+
else:
|
| 500 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
|
| 501 |
+
|
| 502 |
+
# linear proj
|
| 503 |
+
hidden_states = self.to_out[0](hidden_states)
|
| 504 |
+
# dropout
|
| 505 |
+
hidden_states = self.to_out[1](hidden_states)
|
| 506 |
+
return hidden_states, attention_probs
|
| 507 |
+
|
| 508 |
+
def _attention(self, query, key, value):
|
| 509 |
+
# TODO: use baddbmm for better performance
|
| 510 |
+
if query.device.type == "mps":
|
| 511 |
+
# Better performance on mps (~20-25%)
|
| 512 |
+
attention_scores = torch.einsum("b i d, b j d -> b i j", query, key) * self.scale
|
| 513 |
+
else:
|
| 514 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
| 515 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
| 516 |
+
# compute attention output
|
| 517 |
+
|
| 518 |
+
if query.device.type == "mps":
|
| 519 |
+
hidden_states = torch.einsum("b i j, b j d -> b i d", attention_probs, value)
|
| 520 |
+
else:
|
| 521 |
+
hidden_states = torch.matmul(attention_probs, value)
|
| 522 |
+
|
| 523 |
+
# reshape hidden_states
|
| 524 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 525 |
+
return hidden_states, attention_probs
|
| 526 |
+
|
| 527 |
+
def _sliced_attention(self, query, key, value, sequence_length, dim):
|
| 528 |
+
batch_size_attention = query.shape[0]
|
| 529 |
+
hidden_states = torch.zeros(
|
| 530 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
| 531 |
+
)
|
| 532 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
| 533 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
| 534 |
+
start_idx = i * slice_size
|
| 535 |
+
end_idx = (i + 1) * slice_size
|
| 536 |
+
if query.device.type == "mps":
|
| 537 |
+
# Better performance on mps (~20-25%)
|
| 538 |
+
attn_slice = (
|
| 539 |
+
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx])
|
| 540 |
+
* self.scale
|
| 541 |
+
)
|
| 542 |
+
else:
|
| 543 |
+
attn_slice = (
|
| 544 |
+
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
|
| 545 |
+
) # TODO: use baddbmm for better performance
|
| 546 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
| 547 |
+
if query.device.type == "mps":
|
| 548 |
+
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
|
| 549 |
+
else:
|
| 550 |
+
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
|
| 551 |
+
|
| 552 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
| 553 |
+
|
| 554 |
+
# reshape hidden_states
|
| 555 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 556 |
+
return hidden_states
|
| 557 |
+
|
| 558 |
+
def _memory_efficient_attention_xformers(self, query, key, value):
|
| 559 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None)
|
| 560 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 561 |
+
return hidden_states
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
class FeedForward(nn.Module):
|
| 565 |
+
r"""
|
| 566 |
+
A feed-forward layer.
|
| 567 |
+
|
| 568 |
+
Parameters:
|
| 569 |
+
dim (`int`): The number of channels in the input.
|
| 570 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
| 571 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
| 572 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 573 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 574 |
+
"""
|
| 575 |
+
|
| 576 |
+
def __init__(
|
| 577 |
+
self,
|
| 578 |
+
dim: int,
|
| 579 |
+
dim_out: Optional[int] = None,
|
| 580 |
+
mult: int = 4,
|
| 581 |
+
dropout: float = 0.0,
|
| 582 |
+
activation_fn: str = "geglu",
|
| 583 |
+
):
|
| 584 |
+
super().__init__()
|
| 585 |
+
inner_dim = int(dim * mult)
|
| 586 |
+
dim_out = dim_out if dim_out is not None else dim
|
| 587 |
+
|
| 588 |
+
if activation_fn == "geglu":
|
| 589 |
+
geglu = GEGLU(dim, inner_dim)
|
| 590 |
+
elif activation_fn == "geglu-approximate":
|
| 591 |
+
geglu = ApproximateGELU(dim, inner_dim)
|
| 592 |
+
|
| 593 |
+
self.net = nn.ModuleList([])
|
| 594 |
+
# project in
|
| 595 |
+
self.net.append(geglu)
|
| 596 |
+
# project dropout
|
| 597 |
+
self.net.append(nn.Dropout(dropout))
|
| 598 |
+
# project out
|
| 599 |
+
self.net.append(nn.Linear(inner_dim, dim_out))
|
| 600 |
+
|
| 601 |
+
def forward(self, hidden_states):
|
| 602 |
+
for module in self.net:
|
| 603 |
+
hidden_states = module(hidden_states)
|
| 604 |
+
return hidden_states
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
# feedforward
|
| 608 |
+
class GEGLU(nn.Module):
|
| 609 |
+
r"""
|
| 610 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
| 611 |
+
|
| 612 |
+
Parameters:
|
| 613 |
+
dim_in (`int`): The number of channels in the input.
|
| 614 |
+
dim_out (`int`): The number of channels in the output.
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
def __init__(self, dim_in: int, dim_out: int):
|
| 618 |
+
super().__init__()
|
| 619 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 620 |
+
|
| 621 |
+
def gelu(self, gate):
|
| 622 |
+
if gate.device.type != "mps":
|
| 623 |
+
return F.gelu(gate)
|
| 624 |
+
# mps: gelu is not implemented for float16
|
| 625 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
| 626 |
+
|
| 627 |
+
def forward(self, hidden_states):
|
| 628 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
| 629 |
+
return hidden_states * self.gelu(gate)
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
class ApproximateGELU(nn.Module):
|
| 633 |
+
"""
|
| 634 |
+
The approximate form of Gaussian Error Linear Unit (GELU)
|
| 635 |
+
|
| 636 |
+
For more details, see section 2: https://arxiv.org/abs/1606.08415
|
| 637 |
+
"""
|
| 638 |
+
|
| 639 |
+
def __init__(self, dim_in: int, dim_out: int):
|
| 640 |
+
super().__init__()
|
| 641 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
| 642 |
+
|
| 643 |
+
def forward(self, x):
|
| 644 |
+
x = self.proj(x)
|
| 645 |
+
return x * torch.sigmoid(1.702 * x)
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
class AdaLayerNorm(nn.Module):
|
| 649 |
+
"""
|
| 650 |
+
Norm layer modified to incorporate timestep embeddings.
|
| 651 |
+
"""
|
| 652 |
+
|
| 653 |
+
def __init__(self, embedding_dim, num_embeddings):
|
| 654 |
+
super().__init__()
|
| 655 |
+
self.emb = nn.Embedding(num_embeddings, embedding_dim)
|
| 656 |
+
self.silu = nn.SiLU()
|
| 657 |
+
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
|
| 658 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
|
| 659 |
+
|
| 660 |
+
def forward(self, x, timestep):
|
| 661 |
+
emb = self.linear(self.silu(self.emb(timestep)))
|
| 662 |
+
scale, shift = torch.chunk(emb, 2)
|
| 663 |
+
x = self.norm(x) * (1 + scale) + shift
|
| 664 |
+
return x
|
my_model/unet_2d_blocks.py
ADDED
|
@@ -0,0 +1,1602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
from torch import nn
|
| 17 |
+
|
| 18 |
+
from .attention import AttentionBlock, Transformer2DModel
|
| 19 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_down_block(
|
| 23 |
+
down_block_type,
|
| 24 |
+
num_layers,
|
| 25 |
+
in_channels,
|
| 26 |
+
out_channels,
|
| 27 |
+
temb_channels,
|
| 28 |
+
add_downsample,
|
| 29 |
+
resnet_eps,
|
| 30 |
+
resnet_act_fn,
|
| 31 |
+
attn_num_head_channels,
|
| 32 |
+
resnet_groups=None,
|
| 33 |
+
cross_attention_dim=None,
|
| 34 |
+
downsample_padding=None,
|
| 35 |
+
):
|
| 36 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
| 37 |
+
if down_block_type == "DownBlock2D":
|
| 38 |
+
return DownBlock2D(
|
| 39 |
+
num_layers=num_layers,
|
| 40 |
+
in_channels=in_channels,
|
| 41 |
+
out_channels=out_channels,
|
| 42 |
+
temb_channels=temb_channels,
|
| 43 |
+
add_downsample=add_downsample,
|
| 44 |
+
resnet_eps=resnet_eps,
|
| 45 |
+
resnet_act_fn=resnet_act_fn,
|
| 46 |
+
resnet_groups=resnet_groups,
|
| 47 |
+
downsample_padding=downsample_padding,
|
| 48 |
+
)
|
| 49 |
+
elif down_block_type == "AttnDownBlock2D":
|
| 50 |
+
return AttnDownBlock2D(
|
| 51 |
+
num_layers=num_layers,
|
| 52 |
+
in_channels=in_channels,
|
| 53 |
+
out_channels=out_channels,
|
| 54 |
+
temb_channels=temb_channels,
|
| 55 |
+
add_downsample=add_downsample,
|
| 56 |
+
resnet_eps=resnet_eps,
|
| 57 |
+
resnet_act_fn=resnet_act_fn,
|
| 58 |
+
resnet_groups=resnet_groups,
|
| 59 |
+
downsample_padding=downsample_padding,
|
| 60 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 61 |
+
)
|
| 62 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
| 63 |
+
if cross_attention_dim is None:
|
| 64 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
| 65 |
+
return CrossAttnDownBlock2D(
|
| 66 |
+
num_layers=num_layers,
|
| 67 |
+
in_channels=in_channels,
|
| 68 |
+
out_channels=out_channels,
|
| 69 |
+
temb_channels=temb_channels,
|
| 70 |
+
add_downsample=add_downsample,
|
| 71 |
+
resnet_eps=resnet_eps,
|
| 72 |
+
resnet_act_fn=resnet_act_fn,
|
| 73 |
+
resnet_groups=resnet_groups,
|
| 74 |
+
downsample_padding=downsample_padding,
|
| 75 |
+
cross_attention_dim=cross_attention_dim,
|
| 76 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 77 |
+
)
|
| 78 |
+
elif down_block_type == "SkipDownBlock2D":
|
| 79 |
+
return SkipDownBlock2D(
|
| 80 |
+
num_layers=num_layers,
|
| 81 |
+
in_channels=in_channels,
|
| 82 |
+
out_channels=out_channels,
|
| 83 |
+
temb_channels=temb_channels,
|
| 84 |
+
add_downsample=add_downsample,
|
| 85 |
+
resnet_eps=resnet_eps,
|
| 86 |
+
resnet_act_fn=resnet_act_fn,
|
| 87 |
+
downsample_padding=downsample_padding,
|
| 88 |
+
)
|
| 89 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
| 90 |
+
return AttnSkipDownBlock2D(
|
| 91 |
+
num_layers=num_layers,
|
| 92 |
+
in_channels=in_channels,
|
| 93 |
+
out_channels=out_channels,
|
| 94 |
+
temb_channels=temb_channels,
|
| 95 |
+
add_downsample=add_downsample,
|
| 96 |
+
resnet_eps=resnet_eps,
|
| 97 |
+
resnet_act_fn=resnet_act_fn,
|
| 98 |
+
downsample_padding=downsample_padding,
|
| 99 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 100 |
+
)
|
| 101 |
+
elif down_block_type == "DownEncoderBlock2D":
|
| 102 |
+
return DownEncoderBlock2D(
|
| 103 |
+
num_layers=num_layers,
|
| 104 |
+
in_channels=in_channels,
|
| 105 |
+
out_channels=out_channels,
|
| 106 |
+
add_downsample=add_downsample,
|
| 107 |
+
resnet_eps=resnet_eps,
|
| 108 |
+
resnet_act_fn=resnet_act_fn,
|
| 109 |
+
resnet_groups=resnet_groups,
|
| 110 |
+
downsample_padding=downsample_padding,
|
| 111 |
+
)
|
| 112 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
| 113 |
+
return AttnDownEncoderBlock2D(
|
| 114 |
+
num_layers=num_layers,
|
| 115 |
+
in_channels=in_channels,
|
| 116 |
+
out_channels=out_channels,
|
| 117 |
+
add_downsample=add_downsample,
|
| 118 |
+
resnet_eps=resnet_eps,
|
| 119 |
+
resnet_act_fn=resnet_act_fn,
|
| 120 |
+
resnet_groups=resnet_groups,
|
| 121 |
+
downsample_padding=downsample_padding,
|
| 122 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 123 |
+
)
|
| 124 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def get_up_block(
|
| 128 |
+
up_block_type,
|
| 129 |
+
num_layers,
|
| 130 |
+
in_channels,
|
| 131 |
+
out_channels,
|
| 132 |
+
prev_output_channel,
|
| 133 |
+
temb_channels,
|
| 134 |
+
add_upsample,
|
| 135 |
+
resnet_eps,
|
| 136 |
+
resnet_act_fn,
|
| 137 |
+
attn_num_head_channels,
|
| 138 |
+
resnet_groups=None,
|
| 139 |
+
cross_attention_dim=None,
|
| 140 |
+
):
|
| 141 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 142 |
+
if up_block_type == "UpBlock2D":
|
| 143 |
+
return UpBlock2D(
|
| 144 |
+
num_layers=num_layers,
|
| 145 |
+
in_channels=in_channels,
|
| 146 |
+
out_channels=out_channels,
|
| 147 |
+
prev_output_channel=prev_output_channel,
|
| 148 |
+
temb_channels=temb_channels,
|
| 149 |
+
add_upsample=add_upsample,
|
| 150 |
+
resnet_eps=resnet_eps,
|
| 151 |
+
resnet_act_fn=resnet_act_fn,
|
| 152 |
+
resnet_groups=resnet_groups,
|
| 153 |
+
)
|
| 154 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
| 155 |
+
if cross_attention_dim is None:
|
| 156 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
| 157 |
+
return CrossAttnUpBlock2D(
|
| 158 |
+
num_layers=num_layers,
|
| 159 |
+
in_channels=in_channels,
|
| 160 |
+
out_channels=out_channels,
|
| 161 |
+
prev_output_channel=prev_output_channel,
|
| 162 |
+
temb_channels=temb_channels,
|
| 163 |
+
add_upsample=add_upsample,
|
| 164 |
+
resnet_eps=resnet_eps,
|
| 165 |
+
resnet_act_fn=resnet_act_fn,
|
| 166 |
+
resnet_groups=resnet_groups,
|
| 167 |
+
cross_attention_dim=cross_attention_dim,
|
| 168 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 169 |
+
)
|
| 170 |
+
elif up_block_type == "AttnUpBlock2D":
|
| 171 |
+
return AttnUpBlock2D(
|
| 172 |
+
num_layers=num_layers,
|
| 173 |
+
in_channels=in_channels,
|
| 174 |
+
out_channels=out_channels,
|
| 175 |
+
prev_output_channel=prev_output_channel,
|
| 176 |
+
temb_channels=temb_channels,
|
| 177 |
+
add_upsample=add_upsample,
|
| 178 |
+
resnet_eps=resnet_eps,
|
| 179 |
+
resnet_act_fn=resnet_act_fn,
|
| 180 |
+
resnet_groups=resnet_groups,
|
| 181 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 182 |
+
)
|
| 183 |
+
elif up_block_type == "SkipUpBlock2D":
|
| 184 |
+
return SkipUpBlock2D(
|
| 185 |
+
num_layers=num_layers,
|
| 186 |
+
in_channels=in_channels,
|
| 187 |
+
out_channels=out_channels,
|
| 188 |
+
prev_output_channel=prev_output_channel,
|
| 189 |
+
temb_channels=temb_channels,
|
| 190 |
+
add_upsample=add_upsample,
|
| 191 |
+
resnet_eps=resnet_eps,
|
| 192 |
+
resnet_act_fn=resnet_act_fn,
|
| 193 |
+
)
|
| 194 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
| 195 |
+
return AttnSkipUpBlock2D(
|
| 196 |
+
num_layers=num_layers,
|
| 197 |
+
in_channels=in_channels,
|
| 198 |
+
out_channels=out_channels,
|
| 199 |
+
prev_output_channel=prev_output_channel,
|
| 200 |
+
temb_channels=temb_channels,
|
| 201 |
+
add_upsample=add_upsample,
|
| 202 |
+
resnet_eps=resnet_eps,
|
| 203 |
+
resnet_act_fn=resnet_act_fn,
|
| 204 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 205 |
+
)
|
| 206 |
+
elif up_block_type == "UpDecoderBlock2D":
|
| 207 |
+
return UpDecoderBlock2D(
|
| 208 |
+
num_layers=num_layers,
|
| 209 |
+
in_channels=in_channels,
|
| 210 |
+
out_channels=out_channels,
|
| 211 |
+
add_upsample=add_upsample,
|
| 212 |
+
resnet_eps=resnet_eps,
|
| 213 |
+
resnet_act_fn=resnet_act_fn,
|
| 214 |
+
resnet_groups=resnet_groups,
|
| 215 |
+
)
|
| 216 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
| 217 |
+
return AttnUpDecoderBlock2D(
|
| 218 |
+
num_layers=num_layers,
|
| 219 |
+
in_channels=in_channels,
|
| 220 |
+
out_channels=out_channels,
|
| 221 |
+
add_upsample=add_upsample,
|
| 222 |
+
resnet_eps=resnet_eps,
|
| 223 |
+
resnet_act_fn=resnet_act_fn,
|
| 224 |
+
resnet_groups=resnet_groups,
|
| 225 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 226 |
+
)
|
| 227 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
class UNetMidBlock2D(nn.Module):
|
| 231 |
+
def __init__(
|
| 232 |
+
self,
|
| 233 |
+
in_channels: int,
|
| 234 |
+
temb_channels: int,
|
| 235 |
+
dropout: float = 0.0,
|
| 236 |
+
num_layers: int = 1,
|
| 237 |
+
resnet_eps: float = 1e-6,
|
| 238 |
+
resnet_time_scale_shift: str = "default",
|
| 239 |
+
resnet_act_fn: str = "swish",
|
| 240 |
+
resnet_groups: int = 32,
|
| 241 |
+
resnet_pre_norm: bool = True,
|
| 242 |
+
attn_num_head_channels=1,
|
| 243 |
+
attention_type="default",
|
| 244 |
+
output_scale_factor=1.0,
|
| 245 |
+
**kwargs,
|
| 246 |
+
):
|
| 247 |
+
super().__init__()
|
| 248 |
+
|
| 249 |
+
self.attention_type = attention_type
|
| 250 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 251 |
+
|
| 252 |
+
# there is always at least one resnet
|
| 253 |
+
resnets = [
|
| 254 |
+
ResnetBlock2D(
|
| 255 |
+
in_channels=in_channels,
|
| 256 |
+
out_channels=in_channels,
|
| 257 |
+
temb_channels=temb_channels,
|
| 258 |
+
eps=resnet_eps,
|
| 259 |
+
groups=resnet_groups,
|
| 260 |
+
dropout=dropout,
|
| 261 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 262 |
+
non_linearity=resnet_act_fn,
|
| 263 |
+
output_scale_factor=output_scale_factor,
|
| 264 |
+
pre_norm=resnet_pre_norm,
|
| 265 |
+
)
|
| 266 |
+
]
|
| 267 |
+
attentions = []
|
| 268 |
+
|
| 269 |
+
for _ in range(num_layers):
|
| 270 |
+
attentions.append(
|
| 271 |
+
AttentionBlock(
|
| 272 |
+
in_channels,
|
| 273 |
+
num_head_channels=attn_num_head_channels,
|
| 274 |
+
rescale_output_factor=output_scale_factor,
|
| 275 |
+
eps=resnet_eps,
|
| 276 |
+
norm_num_groups=resnet_groups,
|
| 277 |
+
)
|
| 278 |
+
)
|
| 279 |
+
resnets.append(
|
| 280 |
+
ResnetBlock2D(
|
| 281 |
+
in_channels=in_channels,
|
| 282 |
+
out_channels=in_channels,
|
| 283 |
+
temb_channels=temb_channels,
|
| 284 |
+
eps=resnet_eps,
|
| 285 |
+
groups=resnet_groups,
|
| 286 |
+
dropout=dropout,
|
| 287 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 288 |
+
non_linearity=resnet_act_fn,
|
| 289 |
+
output_scale_factor=output_scale_factor,
|
| 290 |
+
pre_norm=resnet_pre_norm,
|
| 291 |
+
)
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
self.attentions = nn.ModuleList(attentions)
|
| 295 |
+
self.resnets = nn.ModuleList(resnets)
|
| 296 |
+
|
| 297 |
+
def forward(self, hidden_states, temb=None, encoder_states=None):
|
| 298 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 299 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 300 |
+
if self.attention_type == "default":
|
| 301 |
+
hidden_states = attn(hidden_states)
|
| 302 |
+
else:
|
| 303 |
+
hidden_states = attn(hidden_states, encoder_states)
|
| 304 |
+
hidden_states = resnet(hidden_states, temb)
|
| 305 |
+
|
| 306 |
+
return hidden_states
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
| 310 |
+
def __init__(
|
| 311 |
+
self,
|
| 312 |
+
in_channels: int,
|
| 313 |
+
temb_channels: int,
|
| 314 |
+
dropout: float = 0.0,
|
| 315 |
+
num_layers: int = 1,
|
| 316 |
+
resnet_eps: float = 1e-6,
|
| 317 |
+
resnet_time_scale_shift: str = "default",
|
| 318 |
+
resnet_act_fn: str = "swish",
|
| 319 |
+
resnet_groups: int = 32,
|
| 320 |
+
resnet_pre_norm: bool = True,
|
| 321 |
+
attn_num_head_channels=1,
|
| 322 |
+
attention_type="default",
|
| 323 |
+
output_scale_factor=1.0,
|
| 324 |
+
cross_attention_dim=1280,
|
| 325 |
+
**kwargs,
|
| 326 |
+
):
|
| 327 |
+
super().__init__()
|
| 328 |
+
|
| 329 |
+
self.attention_type = attention_type
|
| 330 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 331 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 332 |
+
|
| 333 |
+
# there is always at least one resnet
|
| 334 |
+
resnets = [
|
| 335 |
+
ResnetBlock2D(
|
| 336 |
+
in_channels=in_channels,
|
| 337 |
+
out_channels=in_channels,
|
| 338 |
+
temb_channels=temb_channels,
|
| 339 |
+
eps=resnet_eps,
|
| 340 |
+
groups=resnet_groups,
|
| 341 |
+
dropout=dropout,
|
| 342 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 343 |
+
non_linearity=resnet_act_fn,
|
| 344 |
+
output_scale_factor=output_scale_factor,
|
| 345 |
+
pre_norm=resnet_pre_norm,
|
| 346 |
+
)
|
| 347 |
+
]
|
| 348 |
+
attentions = []
|
| 349 |
+
|
| 350 |
+
for _ in range(num_layers):
|
| 351 |
+
attentions.append(
|
| 352 |
+
Transformer2DModel(
|
| 353 |
+
attn_num_head_channels,
|
| 354 |
+
in_channels // attn_num_head_channels,
|
| 355 |
+
in_channels=in_channels,
|
| 356 |
+
num_layers=1,
|
| 357 |
+
cross_attention_dim=cross_attention_dim,
|
| 358 |
+
norm_num_groups=resnet_groups,
|
| 359 |
+
)
|
| 360 |
+
)
|
| 361 |
+
resnets.append(
|
| 362 |
+
ResnetBlock2D(
|
| 363 |
+
in_channels=in_channels,
|
| 364 |
+
out_channels=in_channels,
|
| 365 |
+
temb_channels=temb_channels,
|
| 366 |
+
eps=resnet_eps,
|
| 367 |
+
groups=resnet_groups,
|
| 368 |
+
dropout=dropout,
|
| 369 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 370 |
+
non_linearity=resnet_act_fn,
|
| 371 |
+
output_scale_factor=output_scale_factor,
|
| 372 |
+
pre_norm=resnet_pre_norm,
|
| 373 |
+
)
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
self.attentions = nn.ModuleList(attentions)
|
| 377 |
+
self.resnets = nn.ModuleList(resnets)
|
| 378 |
+
|
| 379 |
+
def set_attention_slice(self, slice_size):
|
| 380 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
| 381 |
+
raise ValueError(
|
| 382 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
| 383 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 384 |
+
)
|
| 385 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
| 386 |
+
raise ValueError(
|
| 387 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
| 388 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
for attn in self.attentions:
|
| 392 |
+
attn._set_attention_slice(slice_size)
|
| 393 |
+
|
| 394 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 395 |
+
for attn in self.attentions:
|
| 396 |
+
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 397 |
+
|
| 398 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
| 399 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 400 |
+
mid_attn = []
|
| 401 |
+
for layer_idx, (attn, resnet) in enumerate(zip(self.attentions, self.resnets[1:])):
|
| 402 |
+
hidden_states, cross_attn_prob = attn(hidden_states, encoder_hidden_states)
|
| 403 |
+
hidden_states = hidden_states.sample
|
| 404 |
+
hidden_states = resnet(hidden_states, temb)
|
| 405 |
+
mid_attn.append(cross_attn_prob)
|
| 406 |
+
return hidden_states, mid_attn
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
class AttnDownBlock2D(nn.Module):
|
| 410 |
+
def __init__(
|
| 411 |
+
self,
|
| 412 |
+
in_channels: int,
|
| 413 |
+
out_channels: int,
|
| 414 |
+
temb_channels: int,
|
| 415 |
+
dropout: float = 0.0,
|
| 416 |
+
num_layers: int = 1,
|
| 417 |
+
resnet_eps: float = 1e-6,
|
| 418 |
+
resnet_time_scale_shift: str = "default",
|
| 419 |
+
resnet_act_fn: str = "swish",
|
| 420 |
+
resnet_groups: int = 32,
|
| 421 |
+
resnet_pre_norm: bool = True,
|
| 422 |
+
attn_num_head_channels=1,
|
| 423 |
+
attention_type="default",
|
| 424 |
+
output_scale_factor=1.0,
|
| 425 |
+
downsample_padding=1,
|
| 426 |
+
add_downsample=True,
|
| 427 |
+
):
|
| 428 |
+
super().__init__()
|
| 429 |
+
resnets = []
|
| 430 |
+
attentions = []
|
| 431 |
+
|
| 432 |
+
self.attention_type = attention_type
|
| 433 |
+
|
| 434 |
+
for i in range(num_layers):
|
| 435 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 436 |
+
resnets.append(
|
| 437 |
+
ResnetBlock2D(
|
| 438 |
+
in_channels=in_channels,
|
| 439 |
+
out_channels=out_channels,
|
| 440 |
+
temb_channels=temb_channels,
|
| 441 |
+
eps=resnet_eps,
|
| 442 |
+
groups=resnet_groups,
|
| 443 |
+
dropout=dropout,
|
| 444 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 445 |
+
non_linearity=resnet_act_fn,
|
| 446 |
+
output_scale_factor=output_scale_factor,
|
| 447 |
+
pre_norm=resnet_pre_norm,
|
| 448 |
+
)
|
| 449 |
+
)
|
| 450 |
+
attentions.append(
|
| 451 |
+
AttentionBlock(
|
| 452 |
+
out_channels,
|
| 453 |
+
num_head_channels=attn_num_head_channels,
|
| 454 |
+
rescale_output_factor=output_scale_factor,
|
| 455 |
+
eps=resnet_eps,
|
| 456 |
+
norm_num_groups=resnet_groups,
|
| 457 |
+
)
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
self.attentions = nn.ModuleList(attentions)
|
| 461 |
+
self.resnets = nn.ModuleList(resnets)
|
| 462 |
+
|
| 463 |
+
if add_downsample:
|
| 464 |
+
self.downsamplers = nn.ModuleList(
|
| 465 |
+
[
|
| 466 |
+
Downsample2D(
|
| 467 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 468 |
+
)
|
| 469 |
+
]
|
| 470 |
+
)
|
| 471 |
+
else:
|
| 472 |
+
self.downsamplers = None
|
| 473 |
+
|
| 474 |
+
def forward(self, hidden_states, temb=None):
|
| 475 |
+
output_states = ()
|
| 476 |
+
|
| 477 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 478 |
+
hidden_states = resnet(hidden_states, temb)
|
| 479 |
+
hidden_states = attn(hidden_states)
|
| 480 |
+
output_states += (hidden_states,)
|
| 481 |
+
|
| 482 |
+
if self.downsamplers is not None:
|
| 483 |
+
for downsampler in self.downsamplers:
|
| 484 |
+
hidden_states = downsampler(hidden_states)
|
| 485 |
+
|
| 486 |
+
output_states += (hidden_states,)
|
| 487 |
+
|
| 488 |
+
return hidden_states, output_states
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class CrossAttnDownBlock2D(nn.Module):
|
| 492 |
+
def __init__(
|
| 493 |
+
self,
|
| 494 |
+
in_channels: int,
|
| 495 |
+
out_channels: int,
|
| 496 |
+
temb_channels: int,
|
| 497 |
+
dropout: float = 0.0,
|
| 498 |
+
num_layers: int = 1,
|
| 499 |
+
resnet_eps: float = 1e-6,
|
| 500 |
+
resnet_time_scale_shift: str = "default",
|
| 501 |
+
resnet_act_fn: str = "swish",
|
| 502 |
+
resnet_groups: int = 32,
|
| 503 |
+
resnet_pre_norm: bool = True,
|
| 504 |
+
attn_num_head_channels=1,
|
| 505 |
+
cross_attention_dim=1280,
|
| 506 |
+
attention_type="default",
|
| 507 |
+
output_scale_factor=1.0,
|
| 508 |
+
downsample_padding=1,
|
| 509 |
+
add_downsample=True,
|
| 510 |
+
):
|
| 511 |
+
super().__init__()
|
| 512 |
+
resnets = []
|
| 513 |
+
attentions = []
|
| 514 |
+
|
| 515 |
+
self.attention_type = attention_type
|
| 516 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 517 |
+
|
| 518 |
+
for i in range(num_layers):
|
| 519 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 520 |
+
resnets.append(
|
| 521 |
+
ResnetBlock2D(
|
| 522 |
+
in_channels=in_channels,
|
| 523 |
+
out_channels=out_channels,
|
| 524 |
+
temb_channels=temb_channels,
|
| 525 |
+
eps=resnet_eps,
|
| 526 |
+
groups=resnet_groups,
|
| 527 |
+
dropout=dropout,
|
| 528 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 529 |
+
non_linearity=resnet_act_fn,
|
| 530 |
+
output_scale_factor=output_scale_factor,
|
| 531 |
+
pre_norm=resnet_pre_norm,
|
| 532 |
+
)
|
| 533 |
+
)
|
| 534 |
+
attentions.append(
|
| 535 |
+
Transformer2DModel(
|
| 536 |
+
attn_num_head_channels,
|
| 537 |
+
out_channels // attn_num_head_channels,
|
| 538 |
+
in_channels=out_channels,
|
| 539 |
+
num_layers=1,
|
| 540 |
+
cross_attention_dim=cross_attention_dim,
|
| 541 |
+
norm_num_groups=resnet_groups,
|
| 542 |
+
)
|
| 543 |
+
)
|
| 544 |
+
self.attentions = nn.ModuleList(attentions)
|
| 545 |
+
self.resnets = nn.ModuleList(resnets)
|
| 546 |
+
|
| 547 |
+
if add_downsample:
|
| 548 |
+
self.downsamplers = nn.ModuleList(
|
| 549 |
+
[
|
| 550 |
+
Downsample2D(
|
| 551 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 552 |
+
)
|
| 553 |
+
]
|
| 554 |
+
)
|
| 555 |
+
else:
|
| 556 |
+
self.downsamplers = None
|
| 557 |
+
|
| 558 |
+
self.gradient_checkpointing = False
|
| 559 |
+
|
| 560 |
+
def set_attention_slice(self, slice_size):
|
| 561 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
| 562 |
+
raise ValueError(
|
| 563 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
| 564 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 565 |
+
)
|
| 566 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
| 567 |
+
raise ValueError(
|
| 568 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
| 569 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
for attn in self.attentions:
|
| 573 |
+
attn._set_attention_slice(slice_size)
|
| 574 |
+
|
| 575 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 576 |
+
for attn in self.attentions:
|
| 577 |
+
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 578 |
+
|
| 579 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
| 580 |
+
output_states = ()
|
| 581 |
+
cross_attn_prob_list = []
|
| 582 |
+
for layer_idx, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
| 583 |
+
if self.training and self.gradient_checkpointing:
|
| 584 |
+
|
| 585 |
+
def create_custom_forward(module, return_dict=None):
|
| 586 |
+
def custom_forward(*inputs):
|
| 587 |
+
if return_dict is not None:
|
| 588 |
+
return module(*inputs, return_dict=return_dict)
|
| 589 |
+
else:
|
| 590 |
+
return module(*inputs)
|
| 591 |
+
|
| 592 |
+
return custom_forward
|
| 593 |
+
|
| 594 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 595 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 596 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
| 597 |
+
)[0]
|
| 598 |
+
else:
|
| 599 |
+
hidden_states = resnet(hidden_states, temb)
|
| 600 |
+
tmp_hidden_states, cross_attn_prob = attn(hidden_states, encoder_hidden_states=encoder_hidden_states)
|
| 601 |
+
hidden_states = tmp_hidden_states.sample
|
| 602 |
+
|
| 603 |
+
output_states += (hidden_states,)
|
| 604 |
+
cross_attn_prob_list.append(cross_attn_prob)
|
| 605 |
+
if self.downsamplers is not None:
|
| 606 |
+
for downsampler in self.downsamplers:
|
| 607 |
+
hidden_states = downsampler(hidden_states)
|
| 608 |
+
|
| 609 |
+
output_states += (hidden_states,)
|
| 610 |
+
|
| 611 |
+
return hidden_states, output_states, cross_attn_prob_list
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
class DownBlock2D(nn.Module):
|
| 615 |
+
def __init__(
|
| 616 |
+
self,
|
| 617 |
+
in_channels: int,
|
| 618 |
+
out_channels: int,
|
| 619 |
+
temb_channels: int,
|
| 620 |
+
dropout: float = 0.0,
|
| 621 |
+
num_layers: int = 1,
|
| 622 |
+
resnet_eps: float = 1e-6,
|
| 623 |
+
resnet_time_scale_shift: str = "default",
|
| 624 |
+
resnet_act_fn: str = "swish",
|
| 625 |
+
resnet_groups: int = 32,
|
| 626 |
+
resnet_pre_norm: bool = True,
|
| 627 |
+
output_scale_factor=1.0,
|
| 628 |
+
add_downsample=True,
|
| 629 |
+
downsample_padding=1,
|
| 630 |
+
):
|
| 631 |
+
super().__init__()
|
| 632 |
+
resnets = []
|
| 633 |
+
|
| 634 |
+
for i in range(num_layers):
|
| 635 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 636 |
+
resnets.append(
|
| 637 |
+
ResnetBlock2D(
|
| 638 |
+
in_channels=in_channels,
|
| 639 |
+
out_channels=out_channels,
|
| 640 |
+
temb_channels=temb_channels,
|
| 641 |
+
eps=resnet_eps,
|
| 642 |
+
groups=resnet_groups,
|
| 643 |
+
dropout=dropout,
|
| 644 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 645 |
+
non_linearity=resnet_act_fn,
|
| 646 |
+
output_scale_factor=output_scale_factor,
|
| 647 |
+
pre_norm=resnet_pre_norm,
|
| 648 |
+
)
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
self.resnets = nn.ModuleList(resnets)
|
| 652 |
+
|
| 653 |
+
if add_downsample:
|
| 654 |
+
self.downsamplers = nn.ModuleList(
|
| 655 |
+
[
|
| 656 |
+
Downsample2D(
|
| 657 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 658 |
+
)
|
| 659 |
+
]
|
| 660 |
+
)
|
| 661 |
+
else:
|
| 662 |
+
self.downsamplers = None
|
| 663 |
+
|
| 664 |
+
self.gradient_checkpointing = False
|
| 665 |
+
|
| 666 |
+
def forward(self, hidden_states, temb=None):
|
| 667 |
+
output_states = ()
|
| 668 |
+
|
| 669 |
+
for resnet in self.resnets:
|
| 670 |
+
if self.training and self.gradient_checkpointing:
|
| 671 |
+
|
| 672 |
+
def create_custom_forward(module):
|
| 673 |
+
def custom_forward(*inputs):
|
| 674 |
+
return module(*inputs)
|
| 675 |
+
|
| 676 |
+
return custom_forward
|
| 677 |
+
|
| 678 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 679 |
+
else:
|
| 680 |
+
hidden_states = resnet(hidden_states, temb)
|
| 681 |
+
|
| 682 |
+
output_states += (hidden_states,)
|
| 683 |
+
|
| 684 |
+
if self.downsamplers is not None:
|
| 685 |
+
for downsampler in self.downsamplers:
|
| 686 |
+
hidden_states = downsampler(hidden_states)
|
| 687 |
+
|
| 688 |
+
output_states += (hidden_states,)
|
| 689 |
+
|
| 690 |
+
return hidden_states, output_states
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
class DownEncoderBlock2D(nn.Module):
|
| 694 |
+
def __init__(
|
| 695 |
+
self,
|
| 696 |
+
in_channels: int,
|
| 697 |
+
out_channels: int,
|
| 698 |
+
dropout: float = 0.0,
|
| 699 |
+
num_layers: int = 1,
|
| 700 |
+
resnet_eps: float = 1e-6,
|
| 701 |
+
resnet_time_scale_shift: str = "default",
|
| 702 |
+
resnet_act_fn: str = "swish",
|
| 703 |
+
resnet_groups: int = 32,
|
| 704 |
+
resnet_pre_norm: bool = True,
|
| 705 |
+
output_scale_factor=1.0,
|
| 706 |
+
add_downsample=True,
|
| 707 |
+
downsample_padding=1,
|
| 708 |
+
):
|
| 709 |
+
super().__init__()
|
| 710 |
+
resnets = []
|
| 711 |
+
|
| 712 |
+
for i in range(num_layers):
|
| 713 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 714 |
+
resnets.append(
|
| 715 |
+
ResnetBlock2D(
|
| 716 |
+
in_channels=in_channels,
|
| 717 |
+
out_channels=out_channels,
|
| 718 |
+
temb_channels=None,
|
| 719 |
+
eps=resnet_eps,
|
| 720 |
+
groups=resnet_groups,
|
| 721 |
+
dropout=dropout,
|
| 722 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 723 |
+
non_linearity=resnet_act_fn,
|
| 724 |
+
output_scale_factor=output_scale_factor,
|
| 725 |
+
pre_norm=resnet_pre_norm,
|
| 726 |
+
)
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
self.resnets = nn.ModuleList(resnets)
|
| 730 |
+
|
| 731 |
+
if add_downsample:
|
| 732 |
+
self.downsamplers = nn.ModuleList(
|
| 733 |
+
[
|
| 734 |
+
Downsample2D(
|
| 735 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 736 |
+
)
|
| 737 |
+
]
|
| 738 |
+
)
|
| 739 |
+
else:
|
| 740 |
+
self.downsamplers = None
|
| 741 |
+
|
| 742 |
+
def forward(self, hidden_states):
|
| 743 |
+
for resnet in self.resnets:
|
| 744 |
+
hidden_states = resnet(hidden_states, temb=None)
|
| 745 |
+
|
| 746 |
+
if self.downsamplers is not None:
|
| 747 |
+
for downsampler in self.downsamplers:
|
| 748 |
+
hidden_states = downsampler(hidden_states)
|
| 749 |
+
|
| 750 |
+
return hidden_states
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
class AttnDownEncoderBlock2D(nn.Module):
|
| 754 |
+
def __init__(
|
| 755 |
+
self,
|
| 756 |
+
in_channels: int,
|
| 757 |
+
out_channels: int,
|
| 758 |
+
dropout: float = 0.0,
|
| 759 |
+
num_layers: int = 1,
|
| 760 |
+
resnet_eps: float = 1e-6,
|
| 761 |
+
resnet_time_scale_shift: str = "default",
|
| 762 |
+
resnet_act_fn: str = "swish",
|
| 763 |
+
resnet_groups: int = 32,
|
| 764 |
+
resnet_pre_norm: bool = True,
|
| 765 |
+
attn_num_head_channels=1,
|
| 766 |
+
output_scale_factor=1.0,
|
| 767 |
+
add_downsample=True,
|
| 768 |
+
downsample_padding=1,
|
| 769 |
+
):
|
| 770 |
+
super().__init__()
|
| 771 |
+
resnets = []
|
| 772 |
+
attentions = []
|
| 773 |
+
|
| 774 |
+
for i in range(num_layers):
|
| 775 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 776 |
+
resnets.append(
|
| 777 |
+
ResnetBlock2D(
|
| 778 |
+
in_channels=in_channels,
|
| 779 |
+
out_channels=out_channels,
|
| 780 |
+
temb_channels=None,
|
| 781 |
+
eps=resnet_eps,
|
| 782 |
+
groups=resnet_groups,
|
| 783 |
+
dropout=dropout,
|
| 784 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 785 |
+
non_linearity=resnet_act_fn,
|
| 786 |
+
output_scale_factor=output_scale_factor,
|
| 787 |
+
pre_norm=resnet_pre_norm,
|
| 788 |
+
)
|
| 789 |
+
)
|
| 790 |
+
attentions.append(
|
| 791 |
+
AttentionBlock(
|
| 792 |
+
out_channels,
|
| 793 |
+
num_head_channels=attn_num_head_channels,
|
| 794 |
+
rescale_output_factor=output_scale_factor,
|
| 795 |
+
eps=resnet_eps,
|
| 796 |
+
norm_num_groups=resnet_groups,
|
| 797 |
+
)
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
self.attentions = nn.ModuleList(attentions)
|
| 801 |
+
self.resnets = nn.ModuleList(resnets)
|
| 802 |
+
|
| 803 |
+
if add_downsample:
|
| 804 |
+
self.downsamplers = nn.ModuleList(
|
| 805 |
+
[
|
| 806 |
+
Downsample2D(
|
| 807 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 808 |
+
)
|
| 809 |
+
]
|
| 810 |
+
)
|
| 811 |
+
else:
|
| 812 |
+
self.downsamplers = None
|
| 813 |
+
|
| 814 |
+
def forward(self, hidden_states):
|
| 815 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 816 |
+
hidden_states = resnet(hidden_states, temb=None)
|
| 817 |
+
hidden_states = attn(hidden_states)
|
| 818 |
+
|
| 819 |
+
if self.downsamplers is not None:
|
| 820 |
+
for downsampler in self.downsamplers:
|
| 821 |
+
hidden_states = downsampler(hidden_states)
|
| 822 |
+
|
| 823 |
+
return hidden_states
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
class AttnSkipDownBlock2D(nn.Module):
|
| 827 |
+
def __init__(
|
| 828 |
+
self,
|
| 829 |
+
in_channels: int,
|
| 830 |
+
out_channels: int,
|
| 831 |
+
temb_channels: int,
|
| 832 |
+
dropout: float = 0.0,
|
| 833 |
+
num_layers: int = 1,
|
| 834 |
+
resnet_eps: float = 1e-6,
|
| 835 |
+
resnet_time_scale_shift: str = "default",
|
| 836 |
+
resnet_act_fn: str = "swish",
|
| 837 |
+
resnet_pre_norm: bool = True,
|
| 838 |
+
attn_num_head_channels=1,
|
| 839 |
+
attention_type="default",
|
| 840 |
+
output_scale_factor=np.sqrt(2.0),
|
| 841 |
+
downsample_padding=1,
|
| 842 |
+
add_downsample=True,
|
| 843 |
+
):
|
| 844 |
+
super().__init__()
|
| 845 |
+
self.attentions = nn.ModuleList([])
|
| 846 |
+
self.resnets = nn.ModuleList([])
|
| 847 |
+
|
| 848 |
+
self.attention_type = attention_type
|
| 849 |
+
|
| 850 |
+
for i in range(num_layers):
|
| 851 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 852 |
+
self.resnets.append(
|
| 853 |
+
ResnetBlock2D(
|
| 854 |
+
in_channels=in_channels,
|
| 855 |
+
out_channels=out_channels,
|
| 856 |
+
temb_channels=temb_channels,
|
| 857 |
+
eps=resnet_eps,
|
| 858 |
+
groups=min(in_channels // 4, 32),
|
| 859 |
+
groups_out=min(out_channels // 4, 32),
|
| 860 |
+
dropout=dropout,
|
| 861 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 862 |
+
non_linearity=resnet_act_fn,
|
| 863 |
+
output_scale_factor=output_scale_factor,
|
| 864 |
+
pre_norm=resnet_pre_norm,
|
| 865 |
+
)
|
| 866 |
+
)
|
| 867 |
+
self.attentions.append(
|
| 868 |
+
AttentionBlock(
|
| 869 |
+
out_channels,
|
| 870 |
+
num_head_channels=attn_num_head_channels,
|
| 871 |
+
rescale_output_factor=output_scale_factor,
|
| 872 |
+
eps=resnet_eps,
|
| 873 |
+
)
|
| 874 |
+
)
|
| 875 |
+
|
| 876 |
+
if add_downsample:
|
| 877 |
+
self.resnet_down = ResnetBlock2D(
|
| 878 |
+
in_channels=out_channels,
|
| 879 |
+
out_channels=out_channels,
|
| 880 |
+
temb_channels=temb_channels,
|
| 881 |
+
eps=resnet_eps,
|
| 882 |
+
groups=min(out_channels // 4, 32),
|
| 883 |
+
dropout=dropout,
|
| 884 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 885 |
+
non_linearity=resnet_act_fn,
|
| 886 |
+
output_scale_factor=output_scale_factor,
|
| 887 |
+
pre_norm=resnet_pre_norm,
|
| 888 |
+
use_in_shortcut=True,
|
| 889 |
+
down=True,
|
| 890 |
+
kernel="fir",
|
| 891 |
+
)
|
| 892 |
+
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
|
| 893 |
+
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
| 894 |
+
else:
|
| 895 |
+
self.resnet_down = None
|
| 896 |
+
self.downsamplers = None
|
| 897 |
+
self.skip_conv = None
|
| 898 |
+
|
| 899 |
+
def forward(self, hidden_states, temb=None, skip_sample=None):
|
| 900 |
+
output_states = ()
|
| 901 |
+
|
| 902 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 903 |
+
hidden_states = resnet(hidden_states, temb)
|
| 904 |
+
hidden_states = attn(hidden_states)
|
| 905 |
+
output_states += (hidden_states,)
|
| 906 |
+
|
| 907 |
+
if self.downsamplers is not None:
|
| 908 |
+
hidden_states = self.resnet_down(hidden_states, temb)
|
| 909 |
+
for downsampler in self.downsamplers:
|
| 910 |
+
skip_sample = downsampler(skip_sample)
|
| 911 |
+
|
| 912 |
+
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
| 913 |
+
|
| 914 |
+
output_states += (hidden_states,)
|
| 915 |
+
|
| 916 |
+
return hidden_states, output_states, skip_sample
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
class SkipDownBlock2D(nn.Module):
|
| 920 |
+
def __init__(
|
| 921 |
+
self,
|
| 922 |
+
in_channels: int,
|
| 923 |
+
out_channels: int,
|
| 924 |
+
temb_channels: int,
|
| 925 |
+
dropout: float = 0.0,
|
| 926 |
+
num_layers: int = 1,
|
| 927 |
+
resnet_eps: float = 1e-6,
|
| 928 |
+
resnet_time_scale_shift: str = "default",
|
| 929 |
+
resnet_act_fn: str = "swish",
|
| 930 |
+
resnet_pre_norm: bool = True,
|
| 931 |
+
output_scale_factor=np.sqrt(2.0),
|
| 932 |
+
add_downsample=True,
|
| 933 |
+
downsample_padding=1,
|
| 934 |
+
):
|
| 935 |
+
super().__init__()
|
| 936 |
+
self.resnets = nn.ModuleList([])
|
| 937 |
+
|
| 938 |
+
for i in range(num_layers):
|
| 939 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 940 |
+
self.resnets.append(
|
| 941 |
+
ResnetBlock2D(
|
| 942 |
+
in_channels=in_channels,
|
| 943 |
+
out_channels=out_channels,
|
| 944 |
+
temb_channels=temb_channels,
|
| 945 |
+
eps=resnet_eps,
|
| 946 |
+
groups=min(in_channels // 4, 32),
|
| 947 |
+
groups_out=min(out_channels // 4, 32),
|
| 948 |
+
dropout=dropout,
|
| 949 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 950 |
+
non_linearity=resnet_act_fn,
|
| 951 |
+
output_scale_factor=output_scale_factor,
|
| 952 |
+
pre_norm=resnet_pre_norm,
|
| 953 |
+
)
|
| 954 |
+
)
|
| 955 |
+
|
| 956 |
+
if add_downsample:
|
| 957 |
+
self.resnet_down = ResnetBlock2D(
|
| 958 |
+
in_channels=out_channels,
|
| 959 |
+
out_channels=out_channels,
|
| 960 |
+
temb_channels=temb_channels,
|
| 961 |
+
eps=resnet_eps,
|
| 962 |
+
groups=min(out_channels // 4, 32),
|
| 963 |
+
dropout=dropout,
|
| 964 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 965 |
+
non_linearity=resnet_act_fn,
|
| 966 |
+
output_scale_factor=output_scale_factor,
|
| 967 |
+
pre_norm=resnet_pre_norm,
|
| 968 |
+
use_in_shortcut=True,
|
| 969 |
+
down=True,
|
| 970 |
+
kernel="fir",
|
| 971 |
+
)
|
| 972 |
+
self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
|
| 973 |
+
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
| 974 |
+
else:
|
| 975 |
+
self.resnet_down = None
|
| 976 |
+
self.downsamplers = None
|
| 977 |
+
self.skip_conv = None
|
| 978 |
+
|
| 979 |
+
def forward(self, hidden_states, temb=None, skip_sample=None):
|
| 980 |
+
output_states = ()
|
| 981 |
+
|
| 982 |
+
for resnet in self.resnets:
|
| 983 |
+
hidden_states = resnet(hidden_states, temb)
|
| 984 |
+
output_states += (hidden_states,)
|
| 985 |
+
|
| 986 |
+
if self.downsamplers is not None:
|
| 987 |
+
hidden_states = self.resnet_down(hidden_states, temb)
|
| 988 |
+
for downsampler in self.downsamplers:
|
| 989 |
+
skip_sample = downsampler(skip_sample)
|
| 990 |
+
|
| 991 |
+
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
| 992 |
+
|
| 993 |
+
output_states += (hidden_states,)
|
| 994 |
+
|
| 995 |
+
return hidden_states, output_states, skip_sample
|
| 996 |
+
|
| 997 |
+
|
| 998 |
+
class AttnUpBlock2D(nn.Module):
|
| 999 |
+
def __init__(
|
| 1000 |
+
self,
|
| 1001 |
+
in_channels: int,
|
| 1002 |
+
prev_output_channel: int,
|
| 1003 |
+
out_channels: int,
|
| 1004 |
+
temb_channels: int,
|
| 1005 |
+
dropout: float = 0.0,
|
| 1006 |
+
num_layers: int = 1,
|
| 1007 |
+
resnet_eps: float = 1e-6,
|
| 1008 |
+
resnet_time_scale_shift: str = "default",
|
| 1009 |
+
resnet_act_fn: str = "swish",
|
| 1010 |
+
resnet_groups: int = 32,
|
| 1011 |
+
resnet_pre_norm: bool = True,
|
| 1012 |
+
attention_type="default",
|
| 1013 |
+
attn_num_head_channels=1,
|
| 1014 |
+
output_scale_factor=1.0,
|
| 1015 |
+
add_upsample=True,
|
| 1016 |
+
):
|
| 1017 |
+
super().__init__()
|
| 1018 |
+
resnets = []
|
| 1019 |
+
attentions = []
|
| 1020 |
+
|
| 1021 |
+
self.attention_type = attention_type
|
| 1022 |
+
|
| 1023 |
+
for i in range(num_layers):
|
| 1024 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1025 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1026 |
+
|
| 1027 |
+
resnets.append(
|
| 1028 |
+
ResnetBlock2D(
|
| 1029 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1030 |
+
out_channels=out_channels,
|
| 1031 |
+
temb_channels=temb_channels,
|
| 1032 |
+
eps=resnet_eps,
|
| 1033 |
+
groups=resnet_groups,
|
| 1034 |
+
dropout=dropout,
|
| 1035 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1036 |
+
non_linearity=resnet_act_fn,
|
| 1037 |
+
output_scale_factor=output_scale_factor,
|
| 1038 |
+
pre_norm=resnet_pre_norm,
|
| 1039 |
+
)
|
| 1040 |
+
)
|
| 1041 |
+
attentions.append(
|
| 1042 |
+
AttentionBlock(
|
| 1043 |
+
out_channels,
|
| 1044 |
+
num_head_channels=attn_num_head_channels,
|
| 1045 |
+
rescale_output_factor=output_scale_factor,
|
| 1046 |
+
eps=resnet_eps,
|
| 1047 |
+
norm_num_groups=resnet_groups,
|
| 1048 |
+
)
|
| 1049 |
+
)
|
| 1050 |
+
|
| 1051 |
+
self.attentions = nn.ModuleList(attentions)
|
| 1052 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1053 |
+
|
| 1054 |
+
if add_upsample:
|
| 1055 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1056 |
+
else:
|
| 1057 |
+
self.upsamplers = None
|
| 1058 |
+
|
| 1059 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
|
| 1060 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 1061 |
+
# pop res hidden states
|
| 1062 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1063 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1064 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1065 |
+
|
| 1066 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1067 |
+
hidden_states = attn(hidden_states)
|
| 1068 |
+
|
| 1069 |
+
if self.upsamplers is not None:
|
| 1070 |
+
for upsampler in self.upsamplers:
|
| 1071 |
+
hidden_states = upsampler(hidden_states)
|
| 1072 |
+
|
| 1073 |
+
return hidden_states
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
class CrossAttnUpBlock2D(nn.Module):
|
| 1077 |
+
def __init__(
|
| 1078 |
+
self,
|
| 1079 |
+
in_channels: int,
|
| 1080 |
+
out_channels: int,
|
| 1081 |
+
prev_output_channel: int,
|
| 1082 |
+
temb_channels: int,
|
| 1083 |
+
dropout: float = 0.0,
|
| 1084 |
+
num_layers: int = 1,
|
| 1085 |
+
resnet_eps: float = 1e-6,
|
| 1086 |
+
resnet_time_scale_shift: str = "default",
|
| 1087 |
+
resnet_act_fn: str = "swish",
|
| 1088 |
+
resnet_groups: int = 32,
|
| 1089 |
+
resnet_pre_norm: bool = True,
|
| 1090 |
+
attn_num_head_channels=1,
|
| 1091 |
+
cross_attention_dim=1280,
|
| 1092 |
+
attention_type="default",
|
| 1093 |
+
output_scale_factor=1.0,
|
| 1094 |
+
add_upsample=True,
|
| 1095 |
+
):
|
| 1096 |
+
super().__init__()
|
| 1097 |
+
resnets = []
|
| 1098 |
+
attentions = []
|
| 1099 |
+
|
| 1100 |
+
self.attention_type = attention_type
|
| 1101 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 1102 |
+
|
| 1103 |
+
for i in range(num_layers):
|
| 1104 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1105 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1106 |
+
|
| 1107 |
+
resnets.append(
|
| 1108 |
+
ResnetBlock2D(
|
| 1109 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1110 |
+
out_channels=out_channels,
|
| 1111 |
+
temb_channels=temb_channels,
|
| 1112 |
+
eps=resnet_eps,
|
| 1113 |
+
groups=resnet_groups,
|
| 1114 |
+
dropout=dropout,
|
| 1115 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1116 |
+
non_linearity=resnet_act_fn,
|
| 1117 |
+
output_scale_factor=output_scale_factor,
|
| 1118 |
+
pre_norm=resnet_pre_norm,
|
| 1119 |
+
)
|
| 1120 |
+
)
|
| 1121 |
+
attentions.append(
|
| 1122 |
+
Transformer2DModel(
|
| 1123 |
+
attn_num_head_channels,
|
| 1124 |
+
out_channels // attn_num_head_channels,
|
| 1125 |
+
in_channels=out_channels,
|
| 1126 |
+
num_layers=1,
|
| 1127 |
+
cross_attention_dim=cross_attention_dim,
|
| 1128 |
+
norm_num_groups=resnet_groups,
|
| 1129 |
+
)
|
| 1130 |
+
)
|
| 1131 |
+
self.attentions = nn.ModuleList(attentions)
|
| 1132 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1133 |
+
|
| 1134 |
+
if add_upsample:
|
| 1135 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1136 |
+
else:
|
| 1137 |
+
self.upsamplers = None
|
| 1138 |
+
|
| 1139 |
+
self.gradient_checkpointing = False
|
| 1140 |
+
|
| 1141 |
+
def set_attention_slice(self, slice_size):
|
| 1142 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
| 1143 |
+
raise ValueError(
|
| 1144 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
| 1145 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 1146 |
+
)
|
| 1147 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
| 1148 |
+
raise ValueError(
|
| 1149 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
| 1150 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 1151 |
+
)
|
| 1152 |
+
|
| 1153 |
+
for attn in self.attentions:
|
| 1154 |
+
attn._set_attention_slice(slice_size)
|
| 1155 |
+
|
| 1156 |
+
self.gradient_checkpointing = False
|
| 1157 |
+
|
| 1158 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 1159 |
+
for attn in self.attentions:
|
| 1160 |
+
attn._set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 1161 |
+
|
| 1162 |
+
def forward(
|
| 1163 |
+
self,
|
| 1164 |
+
hidden_states,
|
| 1165 |
+
res_hidden_states_tuple,
|
| 1166 |
+
temb=None,
|
| 1167 |
+
encoder_hidden_states=None,
|
| 1168 |
+
upsample_size=None,
|
| 1169 |
+
):
|
| 1170 |
+
cross_attn_prob_list = list()
|
| 1171 |
+
for layer_idx, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
| 1172 |
+
# pop res hidden states
|
| 1173 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1174 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1175 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1176 |
+
|
| 1177 |
+
if self.training and self.gradient_checkpointing:
|
| 1178 |
+
|
| 1179 |
+
def create_custom_forward(module, return_dict=None):
|
| 1180 |
+
def custom_forward(*inputs):
|
| 1181 |
+
if return_dict is not None:
|
| 1182 |
+
return module(*inputs, return_dict=return_dict)
|
| 1183 |
+
else:
|
| 1184 |
+
return module(*inputs)
|
| 1185 |
+
|
| 1186 |
+
return custom_forward
|
| 1187 |
+
|
| 1188 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 1189 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1190 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
| 1191 |
+
)[0]
|
| 1192 |
+
else:
|
| 1193 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1194 |
+
tmp_hidden_states, cross_attn_prob = attn(hidden_states, encoder_hidden_states=encoder_hidden_states)
|
| 1195 |
+
hidden_states = tmp_hidden_states.sample
|
| 1196 |
+
cross_attn_prob_list.append(cross_attn_prob)
|
| 1197 |
+
if self.upsamplers is not None:
|
| 1198 |
+
for upsampler in self.upsamplers:
|
| 1199 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 1200 |
+
|
| 1201 |
+
return hidden_states, cross_attn_prob_list
|
| 1202 |
+
|
| 1203 |
+
|
| 1204 |
+
class UpBlock2D(nn.Module):
|
| 1205 |
+
def __init__(
|
| 1206 |
+
self,
|
| 1207 |
+
in_channels: int,
|
| 1208 |
+
prev_output_channel: int,
|
| 1209 |
+
out_channels: int,
|
| 1210 |
+
temb_channels: int,
|
| 1211 |
+
dropout: float = 0.0,
|
| 1212 |
+
num_layers: int = 1,
|
| 1213 |
+
resnet_eps: float = 1e-6,
|
| 1214 |
+
resnet_time_scale_shift: str = "default",
|
| 1215 |
+
resnet_act_fn: str = "swish",
|
| 1216 |
+
resnet_groups: int = 32,
|
| 1217 |
+
resnet_pre_norm: bool = True,
|
| 1218 |
+
output_scale_factor=1.0,
|
| 1219 |
+
add_upsample=True,
|
| 1220 |
+
):
|
| 1221 |
+
super().__init__()
|
| 1222 |
+
resnets = []
|
| 1223 |
+
|
| 1224 |
+
for i in range(num_layers):
|
| 1225 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1226 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1227 |
+
|
| 1228 |
+
resnets.append(
|
| 1229 |
+
ResnetBlock2D(
|
| 1230 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1231 |
+
out_channels=out_channels,
|
| 1232 |
+
temb_channels=temb_channels,
|
| 1233 |
+
eps=resnet_eps,
|
| 1234 |
+
groups=resnet_groups,
|
| 1235 |
+
dropout=dropout,
|
| 1236 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1237 |
+
non_linearity=resnet_act_fn,
|
| 1238 |
+
output_scale_factor=output_scale_factor,
|
| 1239 |
+
pre_norm=resnet_pre_norm,
|
| 1240 |
+
)
|
| 1241 |
+
)
|
| 1242 |
+
|
| 1243 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1244 |
+
|
| 1245 |
+
if add_upsample:
|
| 1246 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1247 |
+
else:
|
| 1248 |
+
self.upsamplers = None
|
| 1249 |
+
|
| 1250 |
+
self.gradient_checkpointing = False
|
| 1251 |
+
|
| 1252 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
| 1253 |
+
for resnet in self.resnets:
|
| 1254 |
+
# pop res hidden states
|
| 1255 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1256 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1257 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1258 |
+
|
| 1259 |
+
if self.training and self.gradient_checkpointing:
|
| 1260 |
+
|
| 1261 |
+
def create_custom_forward(module):
|
| 1262 |
+
def custom_forward(*inputs):
|
| 1263 |
+
return module(*inputs)
|
| 1264 |
+
|
| 1265 |
+
return custom_forward
|
| 1266 |
+
|
| 1267 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 1268 |
+
else:
|
| 1269 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1270 |
+
|
| 1271 |
+
if self.upsamplers is not None:
|
| 1272 |
+
for upsampler in self.upsamplers:
|
| 1273 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 1274 |
+
|
| 1275 |
+
return hidden_states
|
| 1276 |
+
|
| 1277 |
+
|
| 1278 |
+
class UpDecoderBlock2D(nn.Module):
|
| 1279 |
+
def __init__(
|
| 1280 |
+
self,
|
| 1281 |
+
in_channels: int,
|
| 1282 |
+
out_channels: int,
|
| 1283 |
+
dropout: float = 0.0,
|
| 1284 |
+
num_layers: int = 1,
|
| 1285 |
+
resnet_eps: float = 1e-6,
|
| 1286 |
+
resnet_time_scale_shift: str = "default",
|
| 1287 |
+
resnet_act_fn: str = "swish",
|
| 1288 |
+
resnet_groups: int = 32,
|
| 1289 |
+
resnet_pre_norm: bool = True,
|
| 1290 |
+
output_scale_factor=1.0,
|
| 1291 |
+
add_upsample=True,
|
| 1292 |
+
):
|
| 1293 |
+
super().__init__()
|
| 1294 |
+
resnets = []
|
| 1295 |
+
|
| 1296 |
+
for i in range(num_layers):
|
| 1297 |
+
input_channels = in_channels if i == 0 else out_channels
|
| 1298 |
+
|
| 1299 |
+
resnets.append(
|
| 1300 |
+
ResnetBlock2D(
|
| 1301 |
+
in_channels=input_channels,
|
| 1302 |
+
out_channels=out_channels,
|
| 1303 |
+
temb_channels=None,
|
| 1304 |
+
eps=resnet_eps,
|
| 1305 |
+
groups=resnet_groups,
|
| 1306 |
+
dropout=dropout,
|
| 1307 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1308 |
+
non_linearity=resnet_act_fn,
|
| 1309 |
+
output_scale_factor=output_scale_factor,
|
| 1310 |
+
pre_norm=resnet_pre_norm,
|
| 1311 |
+
)
|
| 1312 |
+
)
|
| 1313 |
+
|
| 1314 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1315 |
+
|
| 1316 |
+
if add_upsample:
|
| 1317 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1318 |
+
else:
|
| 1319 |
+
self.upsamplers = None
|
| 1320 |
+
|
| 1321 |
+
def forward(self, hidden_states):
|
| 1322 |
+
for resnet in self.resnets:
|
| 1323 |
+
hidden_states = resnet(hidden_states, temb=None)
|
| 1324 |
+
|
| 1325 |
+
if self.upsamplers is not None:
|
| 1326 |
+
for upsampler in self.upsamplers:
|
| 1327 |
+
hidden_states = upsampler(hidden_states)
|
| 1328 |
+
|
| 1329 |
+
return hidden_states
|
| 1330 |
+
|
| 1331 |
+
|
| 1332 |
+
class AttnUpDecoderBlock2D(nn.Module):
|
| 1333 |
+
def __init__(
|
| 1334 |
+
self,
|
| 1335 |
+
in_channels: int,
|
| 1336 |
+
out_channels: int,
|
| 1337 |
+
dropout: float = 0.0,
|
| 1338 |
+
num_layers: int = 1,
|
| 1339 |
+
resnet_eps: float = 1e-6,
|
| 1340 |
+
resnet_time_scale_shift: str = "default",
|
| 1341 |
+
resnet_act_fn: str = "swish",
|
| 1342 |
+
resnet_groups: int = 32,
|
| 1343 |
+
resnet_pre_norm: bool = True,
|
| 1344 |
+
attn_num_head_channels=1,
|
| 1345 |
+
output_scale_factor=1.0,
|
| 1346 |
+
add_upsample=True,
|
| 1347 |
+
):
|
| 1348 |
+
super().__init__()
|
| 1349 |
+
resnets = []
|
| 1350 |
+
attentions = []
|
| 1351 |
+
|
| 1352 |
+
for i in range(num_layers):
|
| 1353 |
+
input_channels = in_channels if i == 0 else out_channels
|
| 1354 |
+
|
| 1355 |
+
resnets.append(
|
| 1356 |
+
ResnetBlock2D(
|
| 1357 |
+
in_channels=input_channels,
|
| 1358 |
+
out_channels=out_channels,
|
| 1359 |
+
temb_channels=None,
|
| 1360 |
+
eps=resnet_eps,
|
| 1361 |
+
groups=resnet_groups,
|
| 1362 |
+
dropout=dropout,
|
| 1363 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1364 |
+
non_linearity=resnet_act_fn,
|
| 1365 |
+
output_scale_factor=output_scale_factor,
|
| 1366 |
+
pre_norm=resnet_pre_norm,
|
| 1367 |
+
)
|
| 1368 |
+
)
|
| 1369 |
+
attentions.append(
|
| 1370 |
+
AttentionBlock(
|
| 1371 |
+
out_channels,
|
| 1372 |
+
num_head_channels=attn_num_head_channels,
|
| 1373 |
+
rescale_output_factor=output_scale_factor,
|
| 1374 |
+
eps=resnet_eps,
|
| 1375 |
+
norm_num_groups=resnet_groups,
|
| 1376 |
+
)
|
| 1377 |
+
)
|
| 1378 |
+
|
| 1379 |
+
self.attentions = nn.ModuleList(attentions)
|
| 1380 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1381 |
+
|
| 1382 |
+
if add_upsample:
|
| 1383 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 1384 |
+
else:
|
| 1385 |
+
self.upsamplers = None
|
| 1386 |
+
|
| 1387 |
+
def forward(self, hidden_states):
|
| 1388 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 1389 |
+
hidden_states = resnet(hidden_states, temb=None)
|
| 1390 |
+
hidden_states = attn(hidden_states)
|
| 1391 |
+
|
| 1392 |
+
if self.upsamplers is not None:
|
| 1393 |
+
for upsampler in self.upsamplers:
|
| 1394 |
+
hidden_states = upsampler(hidden_states)
|
| 1395 |
+
|
| 1396 |
+
return hidden_states
|
| 1397 |
+
|
| 1398 |
+
|
| 1399 |
+
class AttnSkipUpBlock2D(nn.Module):
|
| 1400 |
+
def __init__(
|
| 1401 |
+
self,
|
| 1402 |
+
in_channels: int,
|
| 1403 |
+
prev_output_channel: int,
|
| 1404 |
+
out_channels: int,
|
| 1405 |
+
temb_channels: int,
|
| 1406 |
+
dropout: float = 0.0,
|
| 1407 |
+
num_layers: int = 1,
|
| 1408 |
+
resnet_eps: float = 1e-6,
|
| 1409 |
+
resnet_time_scale_shift: str = "default",
|
| 1410 |
+
resnet_act_fn: str = "swish",
|
| 1411 |
+
resnet_pre_norm: bool = True,
|
| 1412 |
+
attn_num_head_channels=1,
|
| 1413 |
+
attention_type="default",
|
| 1414 |
+
output_scale_factor=np.sqrt(2.0),
|
| 1415 |
+
upsample_padding=1,
|
| 1416 |
+
add_upsample=True,
|
| 1417 |
+
):
|
| 1418 |
+
super().__init__()
|
| 1419 |
+
self.attentions = nn.ModuleList([])
|
| 1420 |
+
self.resnets = nn.ModuleList([])
|
| 1421 |
+
|
| 1422 |
+
self.attention_type = attention_type
|
| 1423 |
+
|
| 1424 |
+
for i in range(num_layers):
|
| 1425 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1426 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1427 |
+
|
| 1428 |
+
self.resnets.append(
|
| 1429 |
+
ResnetBlock2D(
|
| 1430 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1431 |
+
out_channels=out_channels,
|
| 1432 |
+
temb_channels=temb_channels,
|
| 1433 |
+
eps=resnet_eps,
|
| 1434 |
+
groups=min(resnet_in_channels + res_skip_channels // 4, 32),
|
| 1435 |
+
groups_out=min(out_channels // 4, 32),
|
| 1436 |
+
dropout=dropout,
|
| 1437 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1438 |
+
non_linearity=resnet_act_fn,
|
| 1439 |
+
output_scale_factor=output_scale_factor,
|
| 1440 |
+
pre_norm=resnet_pre_norm,
|
| 1441 |
+
)
|
| 1442 |
+
)
|
| 1443 |
+
|
| 1444 |
+
self.attentions.append(
|
| 1445 |
+
AttentionBlock(
|
| 1446 |
+
out_channels,
|
| 1447 |
+
num_head_channels=attn_num_head_channels,
|
| 1448 |
+
rescale_output_factor=output_scale_factor,
|
| 1449 |
+
eps=resnet_eps,
|
| 1450 |
+
)
|
| 1451 |
+
)
|
| 1452 |
+
|
| 1453 |
+
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
| 1454 |
+
if add_upsample:
|
| 1455 |
+
self.resnet_up = ResnetBlock2D(
|
| 1456 |
+
in_channels=out_channels,
|
| 1457 |
+
out_channels=out_channels,
|
| 1458 |
+
temb_channels=temb_channels,
|
| 1459 |
+
eps=resnet_eps,
|
| 1460 |
+
groups=min(out_channels // 4, 32),
|
| 1461 |
+
groups_out=min(out_channels // 4, 32),
|
| 1462 |
+
dropout=dropout,
|
| 1463 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1464 |
+
non_linearity=resnet_act_fn,
|
| 1465 |
+
output_scale_factor=output_scale_factor,
|
| 1466 |
+
pre_norm=resnet_pre_norm,
|
| 1467 |
+
use_in_shortcut=True,
|
| 1468 |
+
up=True,
|
| 1469 |
+
kernel="fir",
|
| 1470 |
+
)
|
| 1471 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1472 |
+
self.skip_norm = torch.nn.GroupNorm(
|
| 1473 |
+
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
| 1474 |
+
)
|
| 1475 |
+
self.act = nn.SiLU()
|
| 1476 |
+
else:
|
| 1477 |
+
self.resnet_up = None
|
| 1478 |
+
self.skip_conv = None
|
| 1479 |
+
self.skip_norm = None
|
| 1480 |
+
self.act = None
|
| 1481 |
+
|
| 1482 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
|
| 1483 |
+
for resnet in self.resnets:
|
| 1484 |
+
# pop res hidden states
|
| 1485 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1486 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1487 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1488 |
+
|
| 1489 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1490 |
+
|
| 1491 |
+
hidden_states = self.attentions[0](hidden_states)
|
| 1492 |
+
|
| 1493 |
+
if skip_sample is not None:
|
| 1494 |
+
skip_sample = self.upsampler(skip_sample)
|
| 1495 |
+
else:
|
| 1496 |
+
skip_sample = 0
|
| 1497 |
+
|
| 1498 |
+
if self.resnet_up is not None:
|
| 1499 |
+
skip_sample_states = self.skip_norm(hidden_states)
|
| 1500 |
+
skip_sample_states = self.act(skip_sample_states)
|
| 1501 |
+
skip_sample_states = self.skip_conv(skip_sample_states)
|
| 1502 |
+
|
| 1503 |
+
skip_sample = skip_sample + skip_sample_states
|
| 1504 |
+
|
| 1505 |
+
hidden_states = self.resnet_up(hidden_states, temb)
|
| 1506 |
+
|
| 1507 |
+
return hidden_states, skip_sample
|
| 1508 |
+
|
| 1509 |
+
|
| 1510 |
+
class SkipUpBlock2D(nn.Module):
|
| 1511 |
+
def __init__(
|
| 1512 |
+
self,
|
| 1513 |
+
in_channels: int,
|
| 1514 |
+
prev_output_channel: int,
|
| 1515 |
+
out_channels: int,
|
| 1516 |
+
temb_channels: int,
|
| 1517 |
+
dropout: float = 0.0,
|
| 1518 |
+
num_layers: int = 1,
|
| 1519 |
+
resnet_eps: float = 1e-6,
|
| 1520 |
+
resnet_time_scale_shift: str = "default",
|
| 1521 |
+
resnet_act_fn: str = "swish",
|
| 1522 |
+
resnet_pre_norm: bool = True,
|
| 1523 |
+
output_scale_factor=np.sqrt(2.0),
|
| 1524 |
+
add_upsample=True,
|
| 1525 |
+
upsample_padding=1,
|
| 1526 |
+
):
|
| 1527 |
+
super().__init__()
|
| 1528 |
+
self.resnets = nn.ModuleList([])
|
| 1529 |
+
|
| 1530 |
+
for i in range(num_layers):
|
| 1531 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1532 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1533 |
+
|
| 1534 |
+
self.resnets.append(
|
| 1535 |
+
ResnetBlock2D(
|
| 1536 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1537 |
+
out_channels=out_channels,
|
| 1538 |
+
temb_channels=temb_channels,
|
| 1539 |
+
eps=resnet_eps,
|
| 1540 |
+
groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
|
| 1541 |
+
groups_out=min(out_channels // 4, 32),
|
| 1542 |
+
dropout=dropout,
|
| 1543 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1544 |
+
non_linearity=resnet_act_fn,
|
| 1545 |
+
output_scale_factor=output_scale_factor,
|
| 1546 |
+
pre_norm=resnet_pre_norm,
|
| 1547 |
+
)
|
| 1548 |
+
)
|
| 1549 |
+
|
| 1550 |
+
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
| 1551 |
+
if add_upsample:
|
| 1552 |
+
self.resnet_up = ResnetBlock2D(
|
| 1553 |
+
in_channels=out_channels,
|
| 1554 |
+
out_channels=out_channels,
|
| 1555 |
+
temb_channels=temb_channels,
|
| 1556 |
+
eps=resnet_eps,
|
| 1557 |
+
groups=min(out_channels // 4, 32),
|
| 1558 |
+
groups_out=min(out_channels // 4, 32),
|
| 1559 |
+
dropout=dropout,
|
| 1560 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 1561 |
+
non_linearity=resnet_act_fn,
|
| 1562 |
+
output_scale_factor=output_scale_factor,
|
| 1563 |
+
pre_norm=resnet_pre_norm,
|
| 1564 |
+
use_in_shortcut=True,
|
| 1565 |
+
up=True,
|
| 1566 |
+
kernel="fir",
|
| 1567 |
+
)
|
| 1568 |
+
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1569 |
+
self.skip_norm = torch.nn.GroupNorm(
|
| 1570 |
+
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
| 1571 |
+
)
|
| 1572 |
+
self.act = nn.SiLU()
|
| 1573 |
+
else:
|
| 1574 |
+
self.resnet_up = None
|
| 1575 |
+
self.skip_conv = None
|
| 1576 |
+
self.skip_norm = None
|
| 1577 |
+
self.act = None
|
| 1578 |
+
|
| 1579 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
|
| 1580 |
+
for resnet in self.resnets:
|
| 1581 |
+
# pop res hidden states
|
| 1582 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1583 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1584 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1585 |
+
|
| 1586 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1587 |
+
|
| 1588 |
+
if skip_sample is not None:
|
| 1589 |
+
skip_sample = self.upsampler(skip_sample)
|
| 1590 |
+
else:
|
| 1591 |
+
skip_sample = 0
|
| 1592 |
+
|
| 1593 |
+
if self.resnet_up is not None:
|
| 1594 |
+
skip_sample_states = self.skip_norm(hidden_states)
|
| 1595 |
+
skip_sample_states = self.act(skip_sample_states)
|
| 1596 |
+
skip_sample_states = self.skip_conv(skip_sample_states)
|
| 1597 |
+
|
| 1598 |
+
skip_sample = skip_sample + skip_sample_states
|
| 1599 |
+
|
| 1600 |
+
hidden_states = self.resnet_up(hidden_states, temb)
|
| 1601 |
+
|
| 1602 |
+
return hidden_states, skip_sample
|
my_model/unet_2d_condition.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import pdb
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.utils.checkpoint
|
| 21 |
+
|
| 22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from diffusers.modeling_utils import ModelMixin
|
| 24 |
+
from diffusers.utils import BaseOutput, logging
|
| 25 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 26 |
+
from .unet_2d_blocks import (
|
| 27 |
+
CrossAttnDownBlock2D,
|
| 28 |
+
CrossAttnUpBlock2D,
|
| 29 |
+
DownBlock2D,
|
| 30 |
+
UNetMidBlock2DCrossAttn,
|
| 31 |
+
UpBlock2D,
|
| 32 |
+
get_down_block,
|
| 33 |
+
get_up_block,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@dataclass
|
| 41 |
+
class UNet2DConditionOutput(BaseOutput):
|
| 42 |
+
"""
|
| 43 |
+
Args:
|
| 44 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 45 |
+
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
sample: torch.FloatTensor
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin):
|
| 52 |
+
r"""
|
| 53 |
+
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
| 54 |
+
and returns sample shaped output.
|
| 55 |
+
|
| 56 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
| 57 |
+
implements for all the models (such as downloading or saving, etc.)
|
| 58 |
+
|
| 59 |
+
Parameters:
|
| 60 |
+
sample_size (`int`, *optional*): The size of the input sample.
|
| 61 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
| 62 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
| 63 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 64 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
| 65 |
+
Whether to flip the sin to cos in the time embedding.
|
| 66 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 67 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 68 |
+
The tuple of downsample blocks to use.
|
| 69 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
| 70 |
+
The tuple of upsample blocks to use.
|
| 71 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 72 |
+
The tuple of output channels for each block.
|
| 73 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
| 74 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
| 75 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
| 76 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 77 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
| 78 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
| 79 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
| 80 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
_supports_gradient_checkpointing = True
|
| 84 |
+
|
| 85 |
+
@register_to_config
|
| 86 |
+
def __init__(
|
| 87 |
+
self,
|
| 88 |
+
sample_size: Optional[int] = None,
|
| 89 |
+
in_channels: int = 4,
|
| 90 |
+
out_channels: int = 4,
|
| 91 |
+
center_input_sample: bool = False,
|
| 92 |
+
flip_sin_to_cos: bool = True,
|
| 93 |
+
freq_shift: int = 0,
|
| 94 |
+
down_block_types: Tuple[str] = (
|
| 95 |
+
"CrossAttnDownBlock2D",
|
| 96 |
+
"CrossAttnDownBlock2D",
|
| 97 |
+
"CrossAttnDownBlock2D",
|
| 98 |
+
"DownBlock2D",
|
| 99 |
+
),
|
| 100 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
| 101 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 102 |
+
layers_per_block: int = 2,
|
| 103 |
+
downsample_padding: int = 1,
|
| 104 |
+
mid_block_scale_factor: float = 1,
|
| 105 |
+
act_fn: str = "silu",
|
| 106 |
+
norm_num_groups: int = 32,
|
| 107 |
+
norm_eps: float = 1e-5,
|
| 108 |
+
cross_attention_dim: int = 1280,
|
| 109 |
+
attention_head_dim: int = 8,
|
| 110 |
+
):
|
| 111 |
+
super().__init__()
|
| 112 |
+
|
| 113 |
+
self.sample_size = sample_size
|
| 114 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 115 |
+
|
| 116 |
+
# input
|
| 117 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
| 118 |
+
|
| 119 |
+
# time
|
| 120 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 121 |
+
timestep_input_dim = block_out_channels[0]
|
| 122 |
+
|
| 123 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 124 |
+
|
| 125 |
+
self.down_blocks = nn.ModuleList([])
|
| 126 |
+
self.mid_block = None
|
| 127 |
+
self.up_blocks = nn.ModuleList([])
|
| 128 |
+
|
| 129 |
+
# down
|
| 130 |
+
output_channel = block_out_channels[0]
|
| 131 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 132 |
+
input_channel = output_channel
|
| 133 |
+
output_channel = block_out_channels[i]
|
| 134 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 135 |
+
|
| 136 |
+
down_block = get_down_block(
|
| 137 |
+
down_block_type,
|
| 138 |
+
num_layers=layers_per_block,
|
| 139 |
+
in_channels=input_channel,
|
| 140 |
+
out_channels=output_channel,
|
| 141 |
+
temb_channels=time_embed_dim,
|
| 142 |
+
add_downsample=not is_final_block,
|
| 143 |
+
resnet_eps=norm_eps,
|
| 144 |
+
resnet_act_fn=act_fn,
|
| 145 |
+
resnet_groups=norm_num_groups,
|
| 146 |
+
cross_attention_dim=cross_attention_dim,
|
| 147 |
+
attn_num_head_channels=attention_head_dim,
|
| 148 |
+
downsample_padding=downsample_padding,
|
| 149 |
+
)
|
| 150 |
+
self.down_blocks.append(down_block)
|
| 151 |
+
|
| 152 |
+
# mid
|
| 153 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 154 |
+
in_channels=block_out_channels[-1],
|
| 155 |
+
temb_channels=time_embed_dim,
|
| 156 |
+
resnet_eps=norm_eps,
|
| 157 |
+
resnet_act_fn=act_fn,
|
| 158 |
+
output_scale_factor=mid_block_scale_factor,
|
| 159 |
+
resnet_time_scale_shift="default",
|
| 160 |
+
cross_attention_dim=cross_attention_dim,
|
| 161 |
+
attn_num_head_channels=attention_head_dim,
|
| 162 |
+
resnet_groups=norm_num_groups,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# count how many layers upsample the images
|
| 166 |
+
self.num_upsamplers = 0
|
| 167 |
+
|
| 168 |
+
# up
|
| 169 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 170 |
+
output_channel = reversed_block_out_channels[0]
|
| 171 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 172 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 173 |
+
|
| 174 |
+
prev_output_channel = output_channel
|
| 175 |
+
output_channel = reversed_block_out_channels[i]
|
| 176 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 177 |
+
|
| 178 |
+
# add upsample block for all BUT final layer
|
| 179 |
+
if not is_final_block:
|
| 180 |
+
add_upsample = True
|
| 181 |
+
self.num_upsamplers += 1
|
| 182 |
+
else:
|
| 183 |
+
add_upsample = False
|
| 184 |
+
|
| 185 |
+
up_block = get_up_block(
|
| 186 |
+
up_block_type,
|
| 187 |
+
num_layers=layers_per_block + 1,
|
| 188 |
+
in_channels=input_channel,
|
| 189 |
+
out_channels=output_channel,
|
| 190 |
+
prev_output_channel=prev_output_channel,
|
| 191 |
+
temb_channels=time_embed_dim,
|
| 192 |
+
add_upsample=add_upsample,
|
| 193 |
+
resnet_eps=norm_eps,
|
| 194 |
+
resnet_act_fn=act_fn,
|
| 195 |
+
resnet_groups=norm_num_groups,
|
| 196 |
+
cross_attention_dim=cross_attention_dim,
|
| 197 |
+
attn_num_head_channels=attention_head_dim,
|
| 198 |
+
)
|
| 199 |
+
self.up_blocks.append(up_block)
|
| 200 |
+
prev_output_channel = output_channel
|
| 201 |
+
|
| 202 |
+
# out
|
| 203 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
| 204 |
+
self.conv_act = nn.SiLU()
|
| 205 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
| 206 |
+
|
| 207 |
+
def set_attention_slice(self, slice_size):
|
| 208 |
+
if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
|
| 209 |
+
raise ValueError(
|
| 210 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
| 211 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
| 212 |
+
)
|
| 213 |
+
if slice_size is not None and slice_size > self.config.attention_head_dim:
|
| 214 |
+
raise ValueError(
|
| 215 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
| 216 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
for block in self.down_blocks:
|
| 220 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
| 221 |
+
block.set_attention_slice(slice_size)
|
| 222 |
+
|
| 223 |
+
self.mid_block.set_attention_slice(slice_size)
|
| 224 |
+
|
| 225 |
+
for block in self.up_blocks:
|
| 226 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
| 227 |
+
block.set_attention_slice(slice_size)
|
| 228 |
+
|
| 229 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 230 |
+
for block in self.down_blocks:
|
| 231 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
| 232 |
+
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 233 |
+
|
| 234 |
+
self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 235 |
+
|
| 236 |
+
for block in self.up_blocks:
|
| 237 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
| 238 |
+
block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)
|
| 239 |
+
|
| 240 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 241 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
| 242 |
+
module.gradient_checkpointing = value
|
| 243 |
+
|
| 244 |
+
def forward(
|
| 245 |
+
self,
|
| 246 |
+
sample: torch.FloatTensor,
|
| 247 |
+
timestep: Union[torch.Tensor, float, int],
|
| 248 |
+
encoder_hidden_states: torch.Tensor,
|
| 249 |
+
return_dict: bool = True,
|
| 250 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 251 |
+
r"""
|
| 252 |
+
Args:
|
| 253 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs_coarse tensor
|
| 254 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
| 255 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
|
| 256 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 257 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
| 258 |
+
|
| 259 |
+
Returns:
|
| 260 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 261 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
| 262 |
+
returning a tuple, the first element is the sample tensor.
|
| 263 |
+
"""
|
| 264 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 265 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
| 266 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 267 |
+
# on the fly if necessary.
|
| 268 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 269 |
+
|
| 270 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 271 |
+
forward_upsample_size = False
|
| 272 |
+
upsample_size = None
|
| 273 |
+
|
| 274 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 275 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 276 |
+
forward_upsample_size = True
|
| 277 |
+
|
| 278 |
+
# 0. center input if necessary
|
| 279 |
+
if self.config.center_input_sample:
|
| 280 |
+
sample = 2 * sample - 1.0
|
| 281 |
+
|
| 282 |
+
# 1. time
|
| 283 |
+
timesteps = timestep
|
| 284 |
+
if not torch.is_tensor(timesteps):
|
| 285 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 286 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
| 287 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
| 288 |
+
timesteps = timesteps[None].to(sample.device)
|
| 289 |
+
|
| 290 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 291 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 292 |
+
|
| 293 |
+
t_emb = self.time_proj(timesteps)
|
| 294 |
+
|
| 295 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 296 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 297 |
+
# there might be better ways to encapsulate this.
|
| 298 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 299 |
+
emb = self.time_embedding(t_emb)
|
| 300 |
+
# 2. pre-process
|
| 301 |
+
sample = self.conv_in(sample)
|
| 302 |
+
# 3. down
|
| 303 |
+
attn_down = []
|
| 304 |
+
down_block_res_samples = (sample,)
|
| 305 |
+
for block_idx, downsample_block in enumerate(self.down_blocks):
|
| 306 |
+
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
|
| 307 |
+
sample, res_samples, cross_atten_prob = downsample_block(
|
| 308 |
+
hidden_states=sample,
|
| 309 |
+
temb=emb,
|
| 310 |
+
encoder_hidden_states=encoder_hidden_states
|
| 311 |
+
)
|
| 312 |
+
attn_down.append(cross_atten_prob)
|
| 313 |
+
else:
|
| 314 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 315 |
+
|
| 316 |
+
down_block_res_samples += res_samples
|
| 317 |
+
|
| 318 |
+
# 4. mid
|
| 319 |
+
sample, attn_mid = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
|
| 320 |
+
|
| 321 |
+
# 5. up
|
| 322 |
+
attn_up = []
|
| 323 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 324 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 325 |
+
|
| 326 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 327 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 328 |
+
|
| 329 |
+
# if we have not reached the final block and need to forward the
|
| 330 |
+
# upsample size, we do it here
|
| 331 |
+
if not is_final_block and forward_upsample_size:
|
| 332 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 333 |
+
|
| 334 |
+
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
|
| 335 |
+
sample, cross_atten_prob = upsample_block(
|
| 336 |
+
hidden_states=sample,
|
| 337 |
+
temb=emb,
|
| 338 |
+
res_hidden_states_tuple=res_samples,
|
| 339 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 340 |
+
upsample_size=upsample_size,
|
| 341 |
+
)
|
| 342 |
+
attn_up.append(cross_atten_prob)
|
| 343 |
+
else:
|
| 344 |
+
sample = upsample_block(
|
| 345 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 346 |
+
)
|
| 347 |
+
# 6. post-process
|
| 348 |
+
sample = self.conv_norm_out(sample)
|
| 349 |
+
sample = self.conv_act(sample)
|
| 350 |
+
sample = self.conv_out(sample)
|
| 351 |
+
|
| 352 |
+
if not return_dict:
|
| 353 |
+
return (sample,)
|
| 354 |
+
|
| 355 |
+
return UNet2DConditionOutput(sample=sample), attn_up, attn_mid, attn_down
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.13.1
|
| 2 |
+
torchvision==0.14.1
|
| 3 |
+
omegaconf==2.2.3
|
| 4 |
+
opencv-python
|
| 5 |
+
imageio==2.9.0
|
| 6 |
+
transformers==4.24.0
|
| 7 |
+
diffusers==0.7.2
|
| 8 |
+
accelerate==0.13.2
|
| 9 |
+
scipy==1.9.1
|
| 10 |
+
git+https://github.com/openai/CLIP.git
|
| 11 |
+
hydra-core==1.2.0
|
| 12 |
+
tqdm
|
| 13 |
+
gradio==3.23.0
|
utils.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
|
| 4 |
+
loss = 0
|
| 5 |
+
object_number = len(bboxes)
|
| 6 |
+
if object_number == 0:
|
| 7 |
+
return torch.tensor(0).float().cuda()
|
| 8 |
+
for attn_map_integrated in attn_maps_mid:
|
| 9 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
| 10 |
+
|
| 11 |
+
#
|
| 12 |
+
b, i, j = attn_map.shape
|
| 13 |
+
H = W = int(math.sqrt(i))
|
| 14 |
+
for obj_idx in range(object_number):
|
| 15 |
+
obj_loss = 0
|
| 16 |
+
mask = torch.zeros(size=(H, W)).cuda()
|
| 17 |
+
for obj_box in bboxes[obj_idx]:
|
| 18 |
+
|
| 19 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
| 20 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
| 21 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
| 22 |
+
|
| 23 |
+
for obj_position in object_positions[obj_idx]:
|
| 24 |
+
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
|
| 25 |
+
|
| 26 |
+
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1)/ca_map_obj.reshape(b, -1).sum(dim=-1)
|
| 27 |
+
|
| 28 |
+
obj_loss += torch.mean((1 - activation_value) ** 2)
|
| 29 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
| 30 |
+
|
| 31 |
+
# compute loss on padding tokens
|
| 32 |
+
# activation_value = torch.zeros(size=(b, )).cuda()
|
| 33 |
+
# for obj_idx in range(object_number):
|
| 34 |
+
# bbox = bboxes[obj_idx]
|
| 35 |
+
# ca_map_obj = attn_map[:, :, padding_start:].reshape(b, H, W, -1)
|
| 36 |
+
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
|
| 37 |
+
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
|
| 38 |
+
#
|
| 39 |
+
# loss += torch.mean((1 - activation_value) ** 2)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
for attn_map_integrated in attn_maps_up[0]:
|
| 43 |
+
attn_map = attn_map_integrated.chunk(2)[1]
|
| 44 |
+
#
|
| 45 |
+
b, i, j = attn_map.shape
|
| 46 |
+
H = W = int(math.sqrt(i))
|
| 47 |
+
|
| 48 |
+
for obj_idx in range(object_number):
|
| 49 |
+
obj_loss = 0
|
| 50 |
+
mask = torch.zeros(size=(H, W)).cuda()
|
| 51 |
+
for obj_box in bboxes[obj_idx]:
|
| 52 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
| 53 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
| 54 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
| 55 |
+
|
| 56 |
+
for obj_position in object_positions[obj_idx]:
|
| 57 |
+
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
|
| 58 |
+
# ca_map_obj = attn_map[:, :, object_positions[obj_position]].reshape(b, H, W)
|
| 59 |
+
|
| 60 |
+
activation_value = (ca_map_obj * mask).reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(
|
| 61 |
+
dim=-1)
|
| 62 |
+
|
| 63 |
+
obj_loss += torch.mean((1 - activation_value) ** 2)
|
| 64 |
+
loss += (obj_loss / len(object_positions[obj_idx]))
|
| 65 |
+
|
| 66 |
+
# compute loss on padding tokens
|
| 67 |
+
# activation_value = torch.zeros(size=(b, )).cuda()
|
| 68 |
+
# for obj_idx in range(object_number):
|
| 69 |
+
# bbox = bboxes[obj_idx]
|
| 70 |
+
# ca_map_obj = attn_map[:, :,padding_start:].reshape(b, H, W, -1)
|
| 71 |
+
# activation_value += ca_map_obj[:, int(bbox[0] * H): int(bbox[1] * H),
|
| 72 |
+
# int(bbox[2] * W): int(bbox[3] * W), :].reshape(b, -1).sum(dim=-1) / ca_map_obj.reshape(b, -1).sum(dim=-1)
|
| 73 |
+
#
|
| 74 |
+
# loss += torch.mean((1 - activation_value) ** 2)
|
| 75 |
+
loss = loss / (object_number * (len(attn_maps_up[0]) + len(attn_maps_mid)))
|
| 76 |
+
return loss
|