Spaces:
Sleeping
Sleeping
Commit
·
67ae45a
1
Parent(s):
4e5c108
Upload app_fast_api.py
Browse files- app_fast_api.py +562 -0
app_fast_api.py
ADDED
|
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 4 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler
|
| 5 |
+
from my_model import unet_2d_condition
|
| 6 |
+
import json
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
from functools import partial
|
| 10 |
+
import math
|
| 11 |
+
from utils import compute_ca_loss
|
| 12 |
+
from gradio import processing_utils
|
| 13 |
+
from typing import Optional
|
| 14 |
+
from fastapi import FastAPI
|
| 15 |
+
|
| 16 |
+
import warnings
|
| 17 |
+
|
| 18 |
+
import sys
|
| 19 |
+
|
| 20 |
+
sys.tracebacklimit = 0
|
| 21 |
+
|
| 22 |
+
class Blocks(gr.Blocks):
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
theme: str = "default",
|
| 27 |
+
analytics_enabled: Optional[bool] = None,
|
| 28 |
+
mode: str = "blocks",
|
| 29 |
+
title: str = "Gradio",
|
| 30 |
+
css: Optional[str] = None,
|
| 31 |
+
**kwargs,
|
| 32 |
+
):
|
| 33 |
+
self.extra_configs = {
|
| 34 |
+
'thumbnail': kwargs.pop('thumbnail', ''),
|
| 35 |
+
'url': kwargs.pop('url', 'https://gradio.app/'),
|
| 36 |
+
'creator': kwargs.pop('creator', '@teamGradio'),
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
|
| 40 |
+
warnings.filterwarnings("ignore")
|
| 41 |
+
|
| 42 |
+
def get_config_file(self):
|
| 43 |
+
config = super(Blocks, self).get_config_file()
|
| 44 |
+
|
| 45 |
+
for k, v in self.extra_configs.items():
|
| 46 |
+
config[k] = v
|
| 47 |
+
|
| 48 |
+
return config
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def draw_box(boxes=[], texts=[], img=None):
|
| 52 |
+
if len(boxes) == 0 and img is None:
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
if img is None:
|
| 56 |
+
img = Image.new('RGB', (512, 512), (255, 255, 255))
|
| 57 |
+
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
|
| 58 |
+
draw = ImageDraw.Draw(img)
|
| 59 |
+
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
|
| 60 |
+
print(boxes)
|
| 61 |
+
for bid, box in enumerate(boxes):
|
| 62 |
+
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
|
| 63 |
+
anno_text = texts[bid]
|
| 64 |
+
draw.rectangle(
|
| 65 |
+
[box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]],
|
| 66 |
+
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
|
| 67 |
+
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)], anno_text, font=font,
|
| 68 |
+
fill=(255, 255, 255))
|
| 69 |
+
return img
|
| 70 |
+
|
| 71 |
+
'''
|
| 72 |
+
inference model
|
| 73 |
+
'''
|
| 74 |
+
|
| 75 |
+
def inference(device, unet, vae, tokenizer, text_encoder, prompt, bboxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_index_step, rand_seed, guidance_scale):
|
| 76 |
+
uncond_input = tokenizer(
|
| 77 |
+
[""] * 1, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
| 78 |
+
)
|
| 79 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 80 |
+
|
| 81 |
+
input_ids = tokenizer(
|
| 82 |
+
prompt,
|
| 83 |
+
padding="max_length",
|
| 84 |
+
truncation=True,
|
| 85 |
+
max_length=tokenizer.model_max_length,
|
| 86 |
+
return_tensors="pt",
|
| 87 |
+
).input_ids[0].unsqueeze(0).to(device)
|
| 88 |
+
# text_embeddings = text_encoder(input_ids)[0]
|
| 89 |
+
text_embeddings = torch.cat([uncond_embeddings, text_encoder(input_ids)[0]])
|
| 90 |
+
# text_embeddings[1, 1, :] = text_embeddings[1, 2, :]
|
| 91 |
+
generator = torch.manual_seed(rand_seed) # Seed generator to create the inital latent noise
|
| 92 |
+
|
| 93 |
+
latents = torch.randn(
|
| 94 |
+
(batch_size, 4, 64, 64),
|
| 95 |
+
generator=generator,
|
| 96 |
+
).to(device)
|
| 97 |
+
|
| 98 |
+
noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 99 |
+
|
| 100 |
+
# generator = torch.Generator("cuda").manual_seed(1024)
|
| 101 |
+
noise_scheduler.set_timesteps(51)
|
| 102 |
+
|
| 103 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
| 104 |
+
|
| 105 |
+
loss = torch.tensor(10000)
|
| 106 |
+
|
| 107 |
+
for index, t in enumerate(noise_scheduler.timesteps):
|
| 108 |
+
iteration = 0
|
| 109 |
+
|
| 110 |
+
while loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step:
|
| 111 |
+
latents = latents.requires_grad_(True)
|
| 112 |
+
|
| 113 |
+
# latent_model_input = torch.cat([latents] * 2)
|
| 114 |
+
latent_model_input = latents
|
| 115 |
+
|
| 116 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
|
| 117 |
+
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
|
| 118 |
+
unet(latent_model_input, t, encoder_hidden_states=text_encoder(input_ids)[0])
|
| 119 |
+
|
| 120 |
+
# update latents with guidence from gaussian blob
|
| 121 |
+
|
| 122 |
+
loss = compute_ca_loss(attn_map_integrated_mid, attn_map_integrated_up, bboxes=bboxes,
|
| 123 |
+
object_positions=object_positions) * loss_scale
|
| 124 |
+
|
| 125 |
+
print(loss.item() / loss_scale)
|
| 126 |
+
|
| 127 |
+
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
|
| 128 |
+
|
| 129 |
+
latents = latents - grad_cond * noise_scheduler.sigmas[index] ** 2
|
| 130 |
+
iteration += 1
|
| 131 |
+
torch.cuda.empty_cache()
|
| 132 |
+
torch.cuda.empty_cache()
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
with torch.no_grad():
|
| 136 |
+
|
| 137 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 138 |
+
|
| 139 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
|
| 140 |
+
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
|
| 141 |
+
unet(latent_model_input, t, encoder_hidden_states=text_embeddings)
|
| 142 |
+
|
| 143 |
+
noise_pred = noise_pred.sample
|
| 144 |
+
|
| 145 |
+
# perform classifier-free guidance
|
| 146 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 147 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 148 |
+
|
| 149 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 150 |
+
torch.cuda.empty_cache()
|
| 151 |
+
# Decode image
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
# print("decode image")
|
| 154 |
+
latents = 1 / 0.18215 * latents
|
| 155 |
+
image = vae.decode(latents).sample
|
| 156 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 157 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 158 |
+
images = (image * 255).round().astype("uint8")
|
| 159 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 160 |
+
return pil_images
|
| 161 |
+
|
| 162 |
+
def get_concat(ims):
|
| 163 |
+
if len(ims) == 1:
|
| 164 |
+
n_col = 1
|
| 165 |
+
else:
|
| 166 |
+
n_col = 2
|
| 167 |
+
n_row = math.ceil(len(ims) / 2)
|
| 168 |
+
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
|
| 169 |
+
for i, im in enumerate(ims):
|
| 170 |
+
row_id = i // n_col
|
| 171 |
+
col_id = i % n_col
|
| 172 |
+
dst.paste(im, (im.width * col_id, im.height * row_id))
|
| 173 |
+
return dst
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def generate(unet, vae, tokenizer, text_encoder, language_instruction, grounding_texts, sketch_pad,
|
| 177 |
+
loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter,
|
| 178 |
+
state):
|
| 179 |
+
if 'boxes' not in state:
|
| 180 |
+
state['boxes'] = []
|
| 181 |
+
boxes = state['boxes']
|
| 182 |
+
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
| 183 |
+
# assert len(boxes) == len(grounding_texts)
|
| 184 |
+
if len(boxes) != len(grounding_texts):
|
| 185 |
+
if len(boxes) < len(grounding_texts):
|
| 186 |
+
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
|
| 187 |
+
Number of boxes drawn: {}, number of grounding tokens: {}.
|
| 188 |
+
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
|
| 189 |
+
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
|
| 190 |
+
|
| 191 |
+
boxes = (np.asarray(boxes) / 512).tolist()
|
| 192 |
+
boxes = [[box] for box in boxes]
|
| 193 |
+
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
|
| 194 |
+
language_instruction_list = language_instruction.strip('.').split(' ')
|
| 195 |
+
object_positions = []
|
| 196 |
+
for obj in grounding_texts:
|
| 197 |
+
obj_position = []
|
| 198 |
+
for word in obj.split(' '):
|
| 199 |
+
obj_first_index = language_instruction_list.index(word) + 1
|
| 200 |
+
obj_position.append(obj_first_index)
|
| 201 |
+
object_positions.append(obj_position)
|
| 202 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 203 |
+
|
| 204 |
+
gen_images = inference(device, unet, vae, tokenizer, text_encoder, language_instruction, boxes, object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_step, rand_seed, guidance_scale)
|
| 205 |
+
|
| 206 |
+
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
| 207 |
+
gen_images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(gen_images)] \
|
| 208 |
+
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
|
| 209 |
+
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
|
| 210 |
+
|
| 211 |
+
return gen_images + [state]
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def binarize(x):
|
| 215 |
+
return (x != 0).astype('uint8') * 255
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def sized_center_crop(img, cropx, cropy):
|
| 219 |
+
y, x = img.shape[:2]
|
| 220 |
+
startx = x // 2 - (cropx // 2)
|
| 221 |
+
starty = y // 2 - (cropy // 2)
|
| 222 |
+
return img[starty:starty + cropy, startx:startx + cropx]
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def sized_center_fill(img, fill, cropx, cropy):
|
| 226 |
+
y, x = img.shape[:2]
|
| 227 |
+
startx = x // 2 - (cropx // 2)
|
| 228 |
+
starty = y // 2 - (cropy // 2)
|
| 229 |
+
img[starty:starty + cropy, startx:startx + cropx] = fill
|
| 230 |
+
return img
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def sized_center_mask(img, cropx, cropy):
|
| 234 |
+
y, x = img.shape[:2]
|
| 235 |
+
startx = x // 2 - (cropx // 2)
|
| 236 |
+
starty = y // 2 - (cropy // 2)
|
| 237 |
+
center_region = img[starty:starty + cropy, startx:startx + cropx].copy()
|
| 238 |
+
img = (img * 0.2).astype('uint8')
|
| 239 |
+
img[starty:starty + cropy, startx:startx + cropx] = center_region
|
| 240 |
+
return img
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def center_crop(img, HW=None, tgt_size=(512, 512)):
|
| 244 |
+
if HW is None:
|
| 245 |
+
H, W = img.shape[:2]
|
| 246 |
+
HW = min(H, W)
|
| 247 |
+
img = sized_center_crop(img, HW, HW)
|
| 248 |
+
img = Image.fromarray(img)
|
| 249 |
+
img = img.resize(tgt_size)
|
| 250 |
+
return np.array(img)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def draw(input, grounding_texts, new_image_trigger, state):
|
| 254 |
+
if type(input) == dict:
|
| 255 |
+
image = input['image']
|
| 256 |
+
mask = input['mask']
|
| 257 |
+
else:
|
| 258 |
+
mask = input
|
| 259 |
+
if mask.ndim == 3:
|
| 260 |
+
mask = 255 - mask[..., 0]
|
| 261 |
+
|
| 262 |
+
image_scale = 1.0
|
| 263 |
+
|
| 264 |
+
mask = binarize(mask)
|
| 265 |
+
|
| 266 |
+
if type(mask) != np.ndarray:
|
| 267 |
+
mask = np.array(mask)
|
| 268 |
+
|
| 269 |
+
if mask.sum() == 0:
|
| 270 |
+
state = {}
|
| 271 |
+
|
| 272 |
+
image = None
|
| 273 |
+
|
| 274 |
+
if 'boxes' not in state:
|
| 275 |
+
state['boxes'] = []
|
| 276 |
+
|
| 277 |
+
if 'masks' not in state or len(state['masks']) == 0:
|
| 278 |
+
state['masks'] = []
|
| 279 |
+
last_mask = np.zeros_like(mask)
|
| 280 |
+
else:
|
| 281 |
+
last_mask = state['masks'][-1]
|
| 282 |
+
|
| 283 |
+
if type(mask) == np.ndarray and mask.size > 1:
|
| 284 |
+
diff_mask = mask - last_mask
|
| 285 |
+
else:
|
| 286 |
+
diff_mask = np.zeros([])
|
| 287 |
+
|
| 288 |
+
if diff_mask.sum() > 0:
|
| 289 |
+
x1x2 = np.where(diff_mask.max(0) != 0)[0]
|
| 290 |
+
y1y2 = np.where(diff_mask.max(1) != 0)[0]
|
| 291 |
+
y1, y2 = y1y2.min(), y1y2.max()
|
| 292 |
+
x1, x2 = x1x2.min(), x1x2.max()
|
| 293 |
+
|
| 294 |
+
if (x2 - x1 > 5) and (y2 - y1 > 5):
|
| 295 |
+
state['masks'].append(mask.copy())
|
| 296 |
+
state['boxes'].append((x1, y1, x2, y2))
|
| 297 |
+
|
| 298 |
+
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
| 299 |
+
grounding_texts = [x for x in grounding_texts if len(x) > 0]
|
| 300 |
+
if len(grounding_texts) < len(state['boxes']):
|
| 301 |
+
grounding_texts += [f'Obj. {bid + 1}' for bid in range(len(grounding_texts), len(state['boxes']))]
|
| 302 |
+
box_image = draw_box(state['boxes'], grounding_texts, image)
|
| 303 |
+
|
| 304 |
+
return [box_image, new_image_trigger, image_scale, state]
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
|
| 308 |
+
if task != 'Grounded Inpainting':
|
| 309 |
+
sketch_pad_trigger = sketch_pad_trigger + 1
|
| 310 |
+
blank_samples = batch_size % 2 if batch_size > 1 else 0
|
| 311 |
+
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)]
|
| 312 |
+
# state = {}
|
| 313 |
+
return [None, sketch_pad_trigger, None, 1.0] + out_images + [{}]
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
app = FastAPI()
|
| 317 |
+
|
| 318 |
+
@app.get("/")
|
| 319 |
+
async def root():
|
| 320 |
+
return {"message": "Hello World"}
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
# def main():
|
| 325 |
+
css = """
|
| 326 |
+
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
|
| 327 |
+
{
|
| 328 |
+
height: var(--height) !important;
|
| 329 |
+
max-height: var(--height) !important;
|
| 330 |
+
min-height: var(--height) !important;
|
| 331 |
+
}
|
| 332 |
+
#paper-info a {
|
| 333 |
+
color:#008AD7;
|
| 334 |
+
text-decoration: none;
|
| 335 |
+
}
|
| 336 |
+
#paper-info a:hover {
|
| 337 |
+
cursor: pointer;
|
| 338 |
+
text-decoration: none;
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
.tooltip {
|
| 342 |
+
color: #555;
|
| 343 |
+
position: relative;
|
| 344 |
+
display: inline-block;
|
| 345 |
+
cursor: pointer;
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
.tooltip .tooltiptext {
|
| 349 |
+
visibility: hidden;
|
| 350 |
+
width: 400px;
|
| 351 |
+
background-color: #555;
|
| 352 |
+
color: #fff;
|
| 353 |
+
text-align: center;
|
| 354 |
+
padding: 5px;
|
| 355 |
+
border-radius: 5px;
|
| 356 |
+
position: absolute;
|
| 357 |
+
z-index: 1; /* Set z-index to 1 */
|
| 358 |
+
left: 10px;
|
| 359 |
+
top: 100%;
|
| 360 |
+
opacity: 0;
|
| 361 |
+
transition: opacity 0.3s;
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
.tooltip:hover .tooltiptext {
|
| 365 |
+
visibility: visible;
|
| 366 |
+
opacity: 1;
|
| 367 |
+
z-index: 9999; /* Set a high z-index value when hovering */
|
| 368 |
+
}
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
"""
|
| 372 |
+
|
| 373 |
+
rescale_js = """
|
| 374 |
+
function(x) {
|
| 375 |
+
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
|
| 376 |
+
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
|
| 377 |
+
const image_width = root.querySelector('#img2img_image').clientWidth;
|
| 378 |
+
const target_height = parseInt(image_width * image_scale);
|
| 379 |
+
document.body.style.setProperty('--height', `${target_height}px`);
|
| 380 |
+
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
|
| 381 |
+
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
|
| 382 |
+
return x;
|
| 383 |
+
}
|
| 384 |
+
"""
|
| 385 |
+
with open('./conf/unet/config.json') as f:
|
| 386 |
+
unet_config = json.load(f)
|
| 387 |
+
|
| 388 |
+
unet = unet_2d_condition.UNet2DConditionModel(**unet_config).from_pretrained('runwayml/stable-diffusion-v1-5',
|
| 389 |
+
subfolder="unet")
|
| 390 |
+
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
| 391 |
+
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
|
| 392 |
+
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
| 393 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 394 |
+
unet.to(device)
|
| 395 |
+
text_encoder.to(device)
|
| 396 |
+
vae.to(device)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
with Blocks(
|
| 400 |
+
css=css,
|
| 401 |
+
analytics_enabled=False,
|
| 402 |
+
title="Layout-Guidance demo",
|
| 403 |
+
root_url='/Users/shil5883/Desktop/test'
|
| 404 |
+
) as demo:
|
| 405 |
+
description = """<p style="text-align: center; font-weight: bold;">
|
| 406 |
+
<span style="font-size: 28px">Layout Guidance</span>
|
| 407 |
+
<br>
|
| 408 |
+
<span style="font-size: 18px" id="paper-info">
|
| 409 |
+
[<a href=" " target="_blank">Project Page</a>]
|
| 410 |
+
[<a href=" " target="_blank">Paper</a>]
|
| 411 |
+
[<a href=" " target="_blank">GitHub</a>]
|
| 412 |
+
</span>
|
| 413 |
+
</p>
|
| 414 |
+
"""
|
| 415 |
+
gr.HTML(description)
|
| 416 |
+
with gr.Column():
|
| 417 |
+
language_instruction = gr.Textbox(
|
| 418 |
+
label="Text Prompt",
|
| 419 |
+
)
|
| 420 |
+
grounding_instruction = gr.Textbox(
|
| 421 |
+
label="Grounding instruction (Separated by semicolon)",
|
| 422 |
+
)
|
| 423 |
+
sketch_pad_trigger = gr.Number(value=0, visible=False)
|
| 424 |
+
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
|
| 425 |
+
init_white_trigger = gr.Number(value=0, visible=False)
|
| 426 |
+
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
|
| 427 |
+
new_image_trigger = gr.Number(value=0, visible=False)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
with gr.Row():
|
| 431 |
+
sketch_pad = gr.Paint(label="Sketch Pad", elem_id="img2img_image", source='canvas', shape=(512, 512))
|
| 432 |
+
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
|
| 433 |
+
out_gen_1 = gr.Image(type="pil", visible=True, label="Generated Image")
|
| 434 |
+
|
| 435 |
+
with gr.Row():
|
| 436 |
+
clear_btn = gr.Button(value='Clear')
|
| 437 |
+
gen_btn = gr.Button(value='Generate')
|
| 438 |
+
|
| 439 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 440 |
+
with gr.Column():
|
| 441 |
+
description = """<div class="tooltip">Loss Scale Factor ⓘ
|
| 442 |
+
<span class="tooltiptext">The scale factor of the backward guidance loss. The larger it is, the better control we get while it sometimes losses fidelity. </span>
|
| 443 |
+
</div>
|
| 444 |
+
<div class="tooltip">Guidance Scale ⓘ
|
| 445 |
+
<span class="tooltiptext">The scale factor of classifier-free guidance. </span>
|
| 446 |
+
</div>
|
| 447 |
+
<div class="tooltip" >Max Iteration per Step ⓘ
|
| 448 |
+
<span class="tooltiptext">The max iterations of backward guidance in each diffusion inference process.</span>
|
| 449 |
+
</div>
|
| 450 |
+
<div class="tooltip" >Loss Threshold ⓘ
|
| 451 |
+
<span class="tooltiptext">The threshold of loss. If the loss computed by cross-attention map is smaller then the threshold, the backward guidance is stopped. </span>
|
| 452 |
+
</div>
|
| 453 |
+
<div class="tooltip" >Max Step of Backward Guidance ⓘ
|
| 454 |
+
<span class="tooltiptext">The max steps of backward guidance in diffusion inference process.</span>
|
| 455 |
+
</div>
|
| 456 |
+
"""
|
| 457 |
+
gr.HTML(description)
|
| 458 |
+
Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,label="Loss Scale Factor")
|
| 459 |
+
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
|
| 460 |
+
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False)
|
| 461 |
+
max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step")
|
| 462 |
+
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold")
|
| 463 |
+
max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance")
|
| 464 |
+
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
|
| 465 |
+
|
| 466 |
+
state = gr.State({})
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
class Controller:
|
| 470 |
+
def __init__(self):
|
| 471 |
+
self.calls = 0
|
| 472 |
+
self.tracks = 0
|
| 473 |
+
self.resizes = 0
|
| 474 |
+
self.scales = 0
|
| 475 |
+
|
| 476 |
+
def init_white(self, init_white_trigger):
|
| 477 |
+
self.calls += 1
|
| 478 |
+
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger + 1
|
| 479 |
+
|
| 480 |
+
def change_n_samples(self, n_samples):
|
| 481 |
+
blank_samples = n_samples % 2 if n_samples > 1 else 0
|
| 482 |
+
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
|
| 483 |
+
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
controller = Controller()
|
| 487 |
+
demo.load(
|
| 488 |
+
lambda x: x + 1,
|
| 489 |
+
inputs=sketch_pad_trigger,
|
| 490 |
+
outputs=sketch_pad_trigger,
|
| 491 |
+
queue=False)
|
| 492 |
+
sketch_pad.edit(
|
| 493 |
+
draw,
|
| 494 |
+
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
| 495 |
+
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
| 496 |
+
queue=False,
|
| 497 |
+
)
|
| 498 |
+
grounding_instruction.change(
|
| 499 |
+
draw,
|
| 500 |
+
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
|
| 501 |
+
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
|
| 502 |
+
queue=False,
|
| 503 |
+
)
|
| 504 |
+
clear_btn.click(
|
| 505 |
+
clear,
|
| 506 |
+
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
|
| 507 |
+
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, state],
|
| 508 |
+
queue=False)
|
| 509 |
+
|
| 510 |
+
sketch_pad_trigger.change(
|
| 511 |
+
controller.init_white,
|
| 512 |
+
inputs=[init_white_trigger],
|
| 513 |
+
outputs=[sketch_pad, image_scale, init_white_trigger],
|
| 514 |
+
queue=False)
|
| 515 |
+
|
| 516 |
+
gen_btn.click(
|
| 517 |
+
fn=partial(generate, unet, vae, tokenizer, text_encoder),
|
| 518 |
+
inputs=[
|
| 519 |
+
language_instruction, grounding_instruction, sketch_pad,
|
| 520 |
+
loss_threshold, guidance_scale, batch_size, rand_seed,
|
| 521 |
+
max_step,
|
| 522 |
+
Loss_scale, max_iter,
|
| 523 |
+
state,
|
| 524 |
+
],
|
| 525 |
+
outputs=[out_gen_1, state],
|
| 526 |
+
queue=True
|
| 527 |
+
)
|
| 528 |
+
sketch_pad_resize_trigger.change(
|
| 529 |
+
None,
|
| 530 |
+
None,
|
| 531 |
+
sketch_pad_resize_trigger,
|
| 532 |
+
_js=rescale_js,
|
| 533 |
+
queue=False)
|
| 534 |
+
init_white_trigger.change(
|
| 535 |
+
None,
|
| 536 |
+
None,
|
| 537 |
+
init_white_trigger,
|
| 538 |
+
_js=rescale_js,
|
| 539 |
+
queue=False)
|
| 540 |
+
|
| 541 |
+
with gr.Column():
|
| 542 |
+
gr.Examples(
|
| 543 |
+
examples=[
|
| 544 |
+
[
|
| 545 |
+
# "images/input.png",
|
| 546 |
+
"A hello kitty toy is playing with a purple ball.",
|
| 547 |
+
"hello kitty;ball",
|
| 548 |
+
"./images/hello_kitty_results.png"
|
| 549 |
+
],
|
| 550 |
+
],
|
| 551 |
+
inputs=[language_instruction, grounding_instruction, out_gen_1],
|
| 552 |
+
outputs=None,
|
| 553 |
+
fn=None,
|
| 554 |
+
cache_examples=False,
|
| 555 |
+
)
|
| 556 |
+
description = """<p> The source codes of the demo are modified based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GlIGen</a>. Thanks! </p>"""
|
| 557 |
+
gr.HTML(description)
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
demo.queue(concurrency_count=1, api_open=False)
|
| 562 |
+
app = gr.mount_gradio_app(app, demo, path="/layout-guidance")
|