import os # Force the use of legacy Keras (Keras 2 behavior) so that hub.KerasLayer is recognized properly. os.environ["TF_USE_LEGACY_KERAS"] = "1" import streamlit as st import tensorflow as tf import tensorflow_hub as hub import numpy as np from PIL import Image import requests from googletrans import Translator import asyncio import nest_asyncio # Allow nested event loops in Streamlit nest_asyncio.apply() st.set_page_config( page_title="Plant Disease Classifier 🌱", page_icon="🌱", layout="wide", initial_sidebar_state="expanded", ) # Custom CSS for styling custom_css = """ """ st.markdown(custom_css, unsafe_allow_html=True) # Dictionary mapping diseases to recommended pesticides pesticide_recommendations = { 'Bacterial Blight': 'Copper-based fungicides, Streptomycin', 'Red Rot': 'Fungicides containing Mancozeb or Copper', 'Blight': 'Fungicides containing Chlorothalonil', 'Common_Rust': 'Fungicides containing Azoxystrobin or Propiconazole', 'Gray_Leaf_Spot,Healthy': 'Fungicides containing Azoxystrobin or Propiconazole', 'Bacterial blight': 'Copper-based fungicides, Streptomycin', 'curl_virus': 'Insecticides such as Imidacloprid or Pyrethroids', 'fussarium_wilt': 'Soil fumigants, Fungicides containing Thiophanate-methyl', 'Bacterial_blight': 'Copper-based fungicides, Streptomycin', 'Blast': 'Fungicides containing Tricyclazole or Propiconazole', 'Brownspot': 'Fungicides containing Azoxystrobin or Propiconazole', 'Tungro': 'Insecticides such as Neonicotinoids or Pyrethroids', 'septoria': 'Fungicides containing Azoxystrobin or Propiconazole', 'strip_rust': 'Fungicides containing Azoxystrobin or Propiconazole' } def recommend_pesticide(predicted_class): if predicted_class == 'Healthy': return 'No need for any pesticide, plant is healthy' return pesticide_recommendations.get(predicted_class, "No recommendation available") # Use st.cache_resource to load H5 models. @st.cache_resource(show_spinner=False) def load_h5_model(model_path): # This will load your H5 Keras model (which contains hub.KerasLayer) return tf.keras.models.load_model( model_path, custom_objects={"KerasLayer": hub.KerasLayer}, compile=False ) # Define your models dictionary (update paths as needed) models = { 'sugarcane': load_h5_model("models/sugercane_model.h5"), 'maize': load_h5_model("models/maize_model.h5"), 'cotton': load_h5_model("models/cotton_model.h5"), 'rice': load_h5_model("models/rice.h5"), 'wheat': load_h5_model("models/wheat_model.h5"), } # Class names for each model (ensure these match the order of your model outputs) class_names = { 'sugarcane': ['Bacterial Blight', 'Healthy', 'Red Rot'], 'maize': ['Blight', 'Common_Rust', 'Gray_Leaf_Spot,Healthy'], 'cotton': ['Bacterial blight', 'curl_virus', 'fussarium_wilt', 'Healthy'], 'rice': ['Bacterial_blight', 'Blast', 'Brownspot', 'Tungro'], 'wheat': ['Healthy', 'septoria', 'strip_rust'], } # Preprocess the uploaded image def preprocess_image(image_file): try: image = Image.open(image_file).convert("RGB") image = image.resize((224, 224)) img_array = np.array(image).astype("float32") / 255.0 return np.expand_dims(img_array, axis=0) except Exception as e: st.error("Error processing image. Please upload a valid image file.") return None # Classify the image using the appropriate model def classify_image(model_name, image_file): input_image = preprocess_image(image_file) if input_image is None: return None, None predictions = models[model_name].predict(input_image) predicted_index = np.argmax(predictions) predicted_class = class_names[model_name][predicted_index] recommended_pesticide = recommend_pesticide(predicted_class) return predicted_class, recommended_pesticide # (Optional) Retrieve detailed plant information from LM Studio def get_plant_info(disease, plant_type="Unknown"): prompt = f""" Disease Name: {disease} Plant Type: {plant_type} Explain this disease in a very simple way for a farmer. Include: - Symptoms - Causes - Severity - How It Spreads - Treatment & Prevention """ try: LM_STUDIO_API_URL = os.getenv("LM_STUDIO_API_URL", "http://192.168.56.1:1234/v1/chat/completions") response = requests.post(LM_STUDIO_API_URL, json={"messages": [{"role": "user", "content": prompt}]}) response.raise_for_status() data = response.json() detailed_info = data.get("choices", [{}])[0].get("message", {}).get("content", "") return {"detailed_info": detailed_info} except Exception as e: st.error("Error retrieving detailed plant info.") return {"detailed_info": ""} def get_web_pesticide_info(disease, plant_type="Unknown"): query = f"site:agrowon.esakal.com {disease} in {plant_type}" url = "https://www.googleapis.com/customsearch/v1" params = { "key": os.getenv("GOOGLE_API_KEY"), "cx": os.getenv("GOOGLE_CX"), "q": query, "num": 3 } try: response = requests.get(url, params=params) response.raise_for_status() data = response.json() if "items" in data and len(data["items"]) > 0: item = data["items"][0] return {"title": item.get("title", "No title available"), "link": item.get("link", "#"), "snippet": item.get("snippet", "No snippet available"), "summary": item.get("snippet", "No snippet available")} except Exception as e: st.error("Error retrieving web pesticide info.") return None def get_more_web_info(query): url = "https://www.googleapis.com/customsearch/v1" params = { "key": os.getenv("GOOGLE_API_KEY"), "cx": os.getenv("GOOGLE_CX"), "q": query, "num": 3 } try: response = requests.get(url, params=params) response.raise_for_status() data = response.json() results = [] if "items" in data: for item in data["items"]: results.append({"title": item.get("title", "No title available"), "link": item.get("link", "#"), "snippet": item.get("snippet", "No snippet available")}) return results except Exception as e: st.error("Error retrieving additional articles.") return [] def get_commercial_product_info(recommendation): indiamart_query = f"site:indiamart.com pesticide '{recommendation}'" krishi_query = f"site:krishisevakendra.in/products pesticide '{recommendation}'" indiamart_results = get_more_web_info(indiamart_query) krishi_results = get_more_web_info(krishi_query) return indiamart_results + krishi_results translator = Translator() if "language" not in st.session_state: st.session_state.language = "English" async def async_translate_text(text): translated = await translator.translate(text, src='en', dest='mr') return translated.text def translate_text(text): if st.session_state.get("language", "English") == "Marathi": try: return asyncio.get_event_loop().run_until_complete(async_translate_text(text)) except Exception as e: st.error("Translation error.") return text return text def main(): st.sidebar.title("Settings") st.sidebar.info("Choose language and plant type, then upload an image to classify the disease.") language_option = st.sidebar.radio("Language", options=["English", "Marathi"], index=0) st.session_state.language = language_option plant_type = st.sidebar.selectbox("Select Plant Type", options=['sugarcane', 'maize', 'cotton', 'rice', 'wheat']) uploaded_file = st.sidebar.file_uploader("Upload a plant image...", type=["jpg", "jpeg", "png"]) col1, col2 = st.columns([1, 2]) with col1: st.image("https://via.placeholder.com/150.png?text=Plant", caption=translate_text("Plant Health"), use_container_width=True) with col2: st.title(translate_text("Krushi Mitra")) st.write(translate_text("Plant Disease Classification and Pesticide Recommendation.\n\nUpload an image, select plant type, and click on Classify.")) if uploaded_file is not None: st.markdown("---") st.subheader(translate_text("Uploaded Image")) st.image(uploaded_file, use_container_width=True) if st.button(translate_text("Classify")): with st.spinner(translate_text("Classifying...")): predicted_class, pesticide = classify_image(plant_type, uploaded_file) if predicted_class: st.success(translate_text("Classification Complete!")) st.markdown(f"### {translate_text('Predicted Class')} ({plant_type.capitalize()}): {translate_text(predicted_class)}") st.markdown(f"### {translate_text('Recommended Pesticide')}: {translate_text(pesticide)}") tabs = st.tabs([translate_text("Detailed Info"), translate_text("Commercial Products"), translate_text("More Articles")]) with tabs[0]: with st.spinner(translate_text("Retrieving detailed plant information...")): info = get_plant_info(predicted_class, plant_type) if info and info.get("detailed_info"): st.markdown(translate_text("#### Detailed Plant Disease Information")) st.markdown(translate_text(info.get("detailed_info"))) else: st.info(translate_text("Detailed information is not available at the moment.")) web_recommendation = get_web_pesticide_info(predicted_class, plant_type) if web_recommendation: st.markdown(translate_text("#### Additional Pesticide Recommendations")) st.markdown(f"**{translate_text('Title')}:** {translate_text(web_recommendation['title'])}") st.markdown(f"**{translate_text('Summary')}:** {translate_text(web_recommendation['summary'])}") if web_recommendation['link']: st.markdown(f"[{translate_text('Read More')}]({web_recommendation['link']})") else: st.info(translate_text("No additional pesticide recommendations available.")) with tabs[1]: with st.spinner(translate_text("Retrieving commercial product details...")): commercial_products = get_commercial_product_info(pesticide) if commercial_products: for item in commercial_products: st.markdown(f"**{translate_text('Title')}:** {translate_text(item['title'])}") st.markdown(f"**{translate_text('Snippet')}:** {translate_text(item['snippet'])}") if item['link']: st.markdown(f"[{translate_text('Read More')}]({item['link']})") st.markdown("---") else: st.info(translate_text("No commercial product details available.")) with tabs[2]: with st.spinner(translate_text("Retrieving additional articles...")): more_info = get_more_web_info(f"{predicted_class} in {plant_type}") if more_info: for item in more_info: st.markdown(f"**{translate_text('Title')}:** {translate_text(item['title'])}") st.markdown(f"**{translate_text('Snippet')}:** {translate_text(item['snippet'])}") if item['link']: st.markdown(f"[{translate_text('Read More')}]({item['link']})") st.markdown("---") else: st.info(translate_text("No additional articles available.")) else: st.error(translate_text("Error in classification. Please try again.")) else: st.info(translate_text("Please upload an image from the sidebar to get started.")) if __name__ == "__main__": main()