Spaces:
Build error
Build error
| import gradio as gr | |
| import os | |
| import torch | |
| from PIL import Image | |
| from timeit import default_timer as timer | |
| from model import create_model | |
| from typing import Tuple, Dict | |
| class_names = ['Benign', 'Malignant'] | |
| model, transform = create_model() | |
| # Load saved weights | |
| model.load_state_dict( | |
| torch.load( | |
| f="melanoma_model1.pth", | |
| map_location=torch.device("cpu"), # load to CPU | |
| ) | |
| ) | |
| ### 3. Predict function ### | |
| # Create predict function | |
| def predict(img) -> Tuple[Dict, float]: | |
| """Transforms and performs a prediction on img and returns prediction and time taken. | |
| """ | |
| # Start the timer | |
| start_time = timer() | |
| # Apply transformations to the image | |
| img_tensor = transform(img).unsqueeze(0).to(next(model.parameters()).device) | |
| # Put model into evaluation mode | |
| model.eval() | |
| # Pass the image through the model | |
| with torch.no_grad(): | |
| y_logits = model(img_tensor).squeeze() | |
| y_pred_probs = torch.sigmoid(y_logits) | |
| # Round the prediction probabilities to get binary predictions | |
| y_pred_binary = torch.round(y_pred_probs).item() | |
| # Create a dictionary with the class label and the corresponding prediction probability | |
| pred_label = class_names[int(y_pred_binary)] | |
| # Calculate the prediction time | |
| pred_time = round(timer() - start_time, 5) | |
| # Return the prediction dictionary and prediction time | |
| return {pred_label: float(y_pred_probs)}, pred_time | |
| # Create title, description and article strings | |
| title = "Melanoma Cancer Detection" | |
| description = "An Vision Tranformer feature extractor computer vision model to classify images of MELANOMA CANCER.." | |
| article = " model is built by Shukurullo Meliboev using Kaggle's Melanoma disease datasets." | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict, # mapping function from input to output | |
| inputs=gr.Image(type="pil"), # what are the inputs? | |
| outputs=[gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs? | |
| gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo! | |
| demo.launch(False) # generate a publically shareable URL? | |