Train-Lora / app_quant.py
rahul7star's picture
Create app_quant.py
ee3f61d verified
# universal_lora_trainer_quant_dynamic.py
"""
Universal Dynamic LoRA Trainer (Accelerate + PEFT) with optional QLoRA 4-bit support.
- Supports CSV and Parquet dataset files (columns: file_name, text)
- Accepts dataset from a local folder or Hugging Face dataset repo id (username/repo)
- Real LoRA training (PEFT) for:
* text->image (UNet)
* text->video (ChronoEdit transformer)
* prompt-enhancer (text_encoder / QwenEdit)
- Optional:
* 4-bit quantization (bitsandbytes / QLoRA)
* xFormers / FlashAttention
* AdaLoRA (if available)
- Uses HF_TOKEN from environment for upload
- Use `accelerate launch` for multi-GPU / optimized run
"""
import os
import math
import tempfile
from pathlib import Path
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torchvision
import torchvision.transforms as T
import pandas as pd
import numpy as np
import gradio as gr
from tqdm.auto import tqdm
from huggingface_hub import create_repo, upload_folder, hf_hub_download, list_repo_files
from diffusers import DiffusionPipeline
# optional pip installs - guard imports
try:
from chronoedit_diffusers.pipeline_chronoedit import ChronoEditPipeline
CHRONOEDIT_AVAILABLE = True
except Exception:
CHRONOEDIT_AVAILABLE = False
# Qwen image edit optional
try:
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPipeline # optional name
QWENEDIT_AVAILABLE = True
except Exception:
QWENEDIT_AVAILABLE = False
# BitsAndBytes (quantization)
try:
from transformers import BitsAndBytesConfig
BNB_AVAILABLE = True
except Exception:
BitsAndBytesConfig = None
BNB_AVAILABLE = False
# xFormers
try:
import xformers # noqa
XFORMERS_AVAILABLE = True
except Exception:
XFORMERS_AVAILABLE = False
# PEFT / AdaLoRA
try:
from peft import LoraConfig, get_peft_model
try:
from peft import AdaLoraConfig # optional
ADALORA_AVAILABLE = True
except Exception:
AdaLoraConfig = None
ADALORA_AVAILABLE = False
except Exception as e:
raise RuntimeError("Install peft: pip install peft") from e
# Accelerate
try:
from accelerate import Accelerator
except Exception as e:
raise RuntimeError("Install accelerate: pip install accelerate") from e
# ------------------------
# Config
# ------------------------
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".webp", ".bmp"}
VIDEO_EXTS = {".mp4", ".mov", ".avi", ".mkv"}
# ------------------------
# Utilities
# ------------------------
def is_hub_repo_like(s: str) -> bool:
return "/" in s and not Path(s).exists()
def download_from_hf(repo_id: str, filename: str, token: Optional[str] = None, repo_type: str = "dataset") -> str:
token = token or os.environ.get("HF_TOKEN")
return hf_hub_download(repo_id=repo_id, filename=filename, use_auth_token=token, repo_type=repo_type)
def try_list_repo_files(repo_id: str, repo_type: str = "dataset", token: Optional[str] = None):
token = token or os.environ.get("HF_TOKEN")
try:
return list_repo_files(repo_id, token=token, repo_type=repo_type)
except Exception:
return []
def find_target_modules(model, candidates=("q_proj", "k_proj", "v_proj", "o_proj", "to_q", "to_k", "to_v", "proj_out", "to_out")):
names = [n for n, _ in model.named_modules()]
selected = set()
for cand in candidates:
for n in names:
if cand in n:
selected.add(n.split(".")[-1])
if not selected:
return ["to_q", "to_k", "to_v", "to_out"]
return list(selected)
# ------------------------
# Dataset class (CSV/Parquet)
# ------------------------
class MediaTextDataset(Dataset):
"""
Loads records from CSV or Parquet with columns:
- file_name (relative path in folder or filename inside HF dataset repo)
- text
"""
def __init__(self, dataset_source: str, csv_name: str = "dataset.csv", max_frames: int = 5,
image_size=(512,512), video_frame_size=(128,256), hub_token: Optional[str] = None):
self.source = dataset_source
self.is_hub = is_hub_repo_like(dataset_source)
self.max_frames = max_frames
self.image_size = image_size
self.video_frame_size = video_frame_size
self.hub_token = hub_token or os.environ.get("HF_TOKEN")
# load dataframe (CSV or parquet)
if self.is_hub:
# try CSV then parquet; specify repo_type="dataset"
searched = try_list_repo_files(self.source, repo_type="dataset", token=self.hub_token)
# prefer exact csv_name
try:
csv_local = download_from_hf(self.source, csv_name, token=self.hub_token, repo_type="dataset")
except Exception:
# try .parquet variant
alt = csv_name.replace(".csv", ".parquet") if csv_name.endswith(".csv") else csv_name + ".parquet"
csv_local = download_from_hf(self.source, alt, token=self.hub_token, repo_type="dataset")
if str(csv_local).endswith(".parquet"):
df = pd.read_parquet(csv_local)
else:
df = pd.read_csv(csv_local)
self.df = df
self.root = None
else:
root = Path(dataset_source)
csv_path = root / csv_name
parquet_path = root / csv_name.replace(".csv", ".parquet") if csv_name.endswith(".csv") else root / (csv_name + ".parquet")
if csv_path.exists():
self.df = pd.read_csv(csv_path)
elif parquet_path.exists():
self.df = pd.read_parquet(parquet_path)
else:
p = root / csv_name
if p.exists():
if p.suffix.lower() == ".parquet":
self.df = pd.read_parquet(p)
else:
self.df = pd.read_csv(p)
else:
raise FileNotFoundError(f"Can't find {csv_name} in {dataset_source}")
self.root = root
# transforms
self.image_transform = T.Compose([T.ToPILImage(), T.Resize(image_size), T.ToTensor(), T.Normalize([0.5]*3, [0.5]*3)])
self.video_transform = T.Compose([T.ToPILImage(), T.Resize(video_frame_size), T.ToTensor(), T.Normalize([0.5]*3, [0.5]*3)])
def __len__(self):
return len(self.df)
def _maybe_download_from_hub(self, file_name: str) -> str:
if self.root is not None:
p = self.root / file_name
if p.exists():
return str(p)
# else download from dataset repo
return download_from_hf(self.source, file_name, token=self.hub_token, repo_type="dataset")
def _read_video_frames(self, path: str, num_frames: int):
video_frames, _, _ = torchvision.io.read_video(str(path), pts_unit='sec')
total = len(video_frames)
if total == 0:
C, H, W = 3, self.video_frame_size[0], self.video_frame_size[1]
return torch.zeros((num_frames, C, H, W), dtype=torch.float32)
if total < num_frames:
idxs = list(range(total)) + [total-1]*(num_frames-total)
else:
idxs = np.linspace(0, total-1, num_frames).round().astype(int).tolist()
frames = []
for i in idxs:
arr = video_frames[i].numpy() if hasattr(video_frames[i], "numpy") else np.array(video_frames[i])
frames.append(self.video_transform(arr))
frames = torch.stack(frames, dim=0)
return frames
def __getitem__(self, idx):
rec = self.df.iloc[idx]
file_name = rec["file_name"]
caption = rec["text"]
if self.is_hub:
local_path = self._maybe_download_from_hub(file_name)
else:
local_path = str(Path(self.root) / file_name)
p = Path(local_path)
suffix = p.suffix.lower()
if suffix in IMAGE_EXTS:
img = torchvision.io.read_image(local_path) # [C,H,W]
if isinstance(img, torch.Tensor):
img = img.permute(1,2,0).numpy()
return {'type': 'image', 'image': self.image_transform(img), 'caption': caption, 'file_name': file_name}
elif suffix in VIDEO_EXTS:
frames = self._read_video_frames(local_path, self.max_frames) # [T,C,H,W]
return {'type': 'video', 'frames': frames, 'caption': caption, 'file_name': file_name}
else:
raise RuntimeError(f"Unsupported media type: {local_path}")
# ------------------------
# Pipeline loader with optional quantization
# ------------------------
def load_pipeline_auto(base_model_id: str, use_4bit: bool = False, bnb_config: Optional[object] = None, torch_dtype=torch.float16):
low = base_model_id.lower()
is_chrono = "chrono" in low or "wan" in low or "video" in low
is_qwen = "qwen" in low or "qwenimage" in low
# choose pipeline
if is_chrono and CHRONOEDIT_AVAILABLE:
print("Loading ChronoEdit pipeline")
# ChronoEdit may not accept quant config; try with safer call
if use_4bit and bnb_config is not None:
pipe = ChronoEditPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16) # quantized loading of chronoedit not widely supported
else:
pipe = ChronoEditPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
elif is_qwen and QWENEDIT_AVAILABLE:
print("Loading QWEN image-edit pipeline")
pipe = QwenImageEditPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
else:
# fallback to DiffusionPipeline - supports quantization_config for diffusers+transformers
print("Loading standard DiffusionPipeline:", base_model_id, "use_4bit=", use_4bit)
if use_4bit and BNB_AVAILABLE and bnb_config is not None:
pipe = DiffusionPipeline.from_pretrained(base_model_id, quantization_config=bnb_config, torch_dtype=torch.float16)
else:
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
return pipe
# ------------------------
# Auto infer adapter target
# ------------------------
def infer_target_for_task(task_type: str, model_name: str) -> str:
low = model_name.lower()
if task_type == "prompt-lora" or "qwen" in low or "qwenedit" in low:
return "text_encoder"
if task_type == "text-video" or "chrono" in low or "wan" in low:
return "transformer"
# default
return "unet"
# ------------------------
# LoRA attach (supports AdaLoRA if available)
# ------------------------
def attach_lora(pipe, adapter_target: str, r: int = 8, alpha: int = 16, dropout: float = 0.0, use_adalora: bool = False):
if adapter_target == "unet":
if not hasattr(pipe, "unet"):
raise RuntimeError("Pipeline has no UNet to attach LoRA")
target_module = pipe.unet
attr = "unet"
elif adapter_target == "transformer":
if not hasattr(pipe, "transformer"):
raise RuntimeError("Pipeline has no transformer to attach LoRA")
target_module = pipe.transformer
attr = "transformer"
elif adapter_target == "text_encoder":
if not hasattr(pipe, "text_encoder"):
# some models name it differently; try encoder attribute fallback
if hasattr(pipe, "text_encoder"):
target_module = pipe.text_encoder
attr = "text_encoder"
else:
raise RuntimeError("Pipeline has no text_encoder for prompt-loRA")
else:
target_module = pipe.text_encoder
attr = "text_encoder"
else:
raise RuntimeError("Unknown adapter_target")
target_modules = find_target_modules(target_module)
print("Detected target_modules for LoRA:", target_modules)
if use_adalora and ADALORA_AVAILABLE:
lora_config = AdaLoraConfig(
r=r,
lora_alpha=alpha,
target_modules=target_modules,
init_r=4,
lora_dropout=dropout,
)
else:
lora_config = LoraConfig(
r=r,
lora_alpha=alpha,
target_modules=target_modules,
lora_dropout=dropout,
bias="none",
task_type="SEQ_2_SEQ_LM",
)
peft_model = get_peft_model(target_module, lora_config)
setattr(pipe, attr, peft_model)
return pipe, attr
# ------------------------
# Training loop (Accelerate-aware)
# ------------------------
def train_lora_accelerate(base_model_id: str,
dataset_source: str,
csv_name: str,
task_type: str,
adapter_target_override: Optional[str],
output_dir: str,
epochs: int = 1,
batch_size: int = 1,
lr: float = 1e-4,
max_train_steps: Optional[int] = None,
lora_r: int = 8,
lora_alpha: int = 16,
use_4bit: bool = False,
enable_xformers: bool = False,
use_adalora: bool = False,
gradient_accumulation_steps: int = 1,
mixed_precision: Optional[str] = None,
save_every_steps: int = 200,
max_frames: int = 5):
# Setup Accelerator
accelerator = Accelerator(mixed_precision=mixed_precision or ("fp16" if torch.cuda.is_available() else "no")),
# Note: Accelerator is returned as a tuple if trailing comma; fix:
accelerator = accelerator if isinstance(accelerator, Accelerator) else accelerator[0]
device = accelerator.device
# prepare bitsandbytes config if requested
bnb_conf = None
if use_4bit and BNB_AVAILABLE:
bnb_conf = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
# Load pipeline (supports quant for standard diffusers)
pipe = load_pipeline_auto(base_model_id, use_4bit=use_4bit, bnb_config=bnb_conf, torch_dtype=torch.float16 if device.type == "cuda" else torch.float32)
# optionally enable memory efficient attention
if enable_xformers:
try:
if hasattr(pipe, "enable_xformers_memory_efficient_attention"):
pipe.enable_xformers_memory_efficient_attention()
elif hasattr(pipe, "enable_attention_slicing"):
pipe.enable_attention_slicing()
print("xFormers / memory efficient attention enabled.")
except Exception as e:
print("Could not enable xformers:", e)
# infer adapter target automatically if not overridden
adapter_target = adapter_target_override if adapter_target_override else infer_target_for_task(task_type, base_model_id)
print("Adapter target set to:", adapter_target)
# attach LoRA
pipe, attr = attach_lora(pipe, adapter_target, r=lora_r, alpha=lora_alpha, dropout=0.0, use_adalora=use_adalora)
# pick the peft module for optimization
peft_module = getattr(pipe, attr)
# dataset + dataloader (we use batch_size=1 collate)
dataset = MediaTextDataset(dataset_source, csv_name=csv_name, max_frames=max_frames)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True, collate_fn=lambda x: x)
# optimizer
trainable_params = [p for n,p in peft_module.named_parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(trainable_params, lr=lr)
# prepare objects with accelerator
peft_module, optimizer, dataloader = accelerator.prepare(peft_module, optimizer, dataloader)
# training loop
logs = []
global_step = 0
loss_fn = nn.MSELoss()
# scheduler setup if available
if hasattr(pipe, "scheduler"):
try:
pipe.scheduler.set_timesteps(50, device=device)
timesteps = pipe.scheduler.timesteps
except Exception:
timesteps = None
else:
timesteps = None
# Training
for epoch in range(int(epochs)):
pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
for batch in pbar:
example = batch[0]
# image flow
if example["type"] == "image":
img = example["image"].unsqueeze(0).to(device)
caption = [example["caption"]]
if not hasattr(pipe, "encode_prompt"):
raise RuntimeError("Pipeline lacks encode_prompt - cannot encode prompts")
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
prompt=caption,
negative_prompt=None,
do_classifier_free_guidance=True,
num_videos_per_prompt=1,
prompt_embeds=None,
negative_prompt_embeds=None,
max_sequence_length=512,
device=device,
)
if not hasattr(pipe, "vae"):
raise RuntimeError("Pipeline lacks VAE - required for latent conversion")
with torch.no_grad():
latents = pipe.vae.encode(img.to(device)).latent_dist.sample() * pipe.vae.config.scaling_factor
noise = torch.randn_like(latents).to(device)
if timesteps is None:
t = torch.tensor(1, device=device)
else:
t = pipe.scheduler.timesteps[torch.randint(0, len(pipe.scheduler.timesteps), (1,)).item()].to(device)
noisy_latents = pipe.scheduler.add_noise(latents, noise, t)
# forward through peft_module (unet)
out = peft_module(noisy_latents, t.expand(noisy_latents.shape[0]), encoder_hidden_states=prompt_embeds)
if hasattr(out, "sample"):
noise_pred = out.sample
elif isinstance(out, tuple):
noise_pred = out[0]
else:
noise_pred = out
loss = loss_fn(noise_pred, noise)
else:
# video flow (ChronoEdit simplified)
if not CHRONOEDIT_AVAILABLE:
raise RuntimeError("ChronoEdit training requested but not installed in environment")
frames = example["frames"].unsqueeze(0).to(device) # [1, T, C, H, W]
frames_np = frames.squeeze(0).permute(0,2,3,1).cpu().numpy().tolist()
video_tensor = pipe.video_processor.preprocess(frames_np, height=frames.shape[-2], width=frames.shape[-1]).to(device)
latents_out = pipe.prepare_latents(video_tensor, batch_size=1, num_channels_latents=pipe.vae.config.z_dim, height=video_tensor.shape[-2], width=video_tensor.shape[-1], num_frames=frames.shape[1], dtype=video_tensor.dtype, device=device, generator=None, latents=None, last_image=None)
if pipe.config.expand_timesteps:
latents, condition, first_frame_mask = latents_out
else:
latents, condition = latents_out
first_frame_mask = None
noise = torch.randn_like(latents).to(device)
t = pipe.scheduler.timesteps[torch.randint(0, len(pipe.scheduler.timesteps), (1,)).item()].to(device)
noisy_latents = pipe.scheduler.add_noise(latents, noise, t)
if pipe.config.expand_timesteps:
latent_model_input = (1 - first_frame_mask) * condition + first_frame_mask * noisy_latents
else:
latent_model_input = torch.cat([noisy_latents, condition], dim=1)
out = peft_module(hidden_states=latent_model_input, timestep=t.unsqueeze(0).expand(latent_model_input.shape[0]), encoder_hidden_states=None, encoder_hidden_states_image=None, return_dict=False)
noise_pred = out[0] if isinstance(out, tuple) else out
loss = loss_fn(noise_pred, noise)
# backward and optimizer step (accelerator)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
global_step += 1
logs.append(f"step {global_step} loss {loss.item():.6f}")
pbar.set_postfix({"loss": f"{loss.item():.6f}"})
if max_train_steps and global_step >= max_train_steps:
break
if global_step % save_every_steps == 0:
out_sub = Path(output_dir) / f"lora_step_{global_step}"
out_sub.mkdir(parents=True, exist_ok=True)
try:
peft_module.save_pretrained(str(out_sub))
except Exception:
torch.save({k: v.cpu() for k,v in peft_module.state_dict().items()}, str(out_sub / "adapter_state_dict.pt"))
print(f"Saved adapter at {out_sub}")
if max_train_steps and global_step >= max_train_steps:
break
# final save
Path(output_dir).mkdir(parents=True, exist_ok=True)
try:
peft_module.save_pretrained(output_dir)
except Exception:
torch.save({k: v.cpu() for k,v in peft_module.state_dict().items()}, str(Path(output_dir) / "adapter_state_dict.pt"))
return output_dir, logs
# ------------------------
# Test generation (best-effort)
# ------------------------
def test_generation_load_and_run(base_model_id: str, adapter_dir: Optional[str], adapter_target: str, prompt: str, use_4bit: bool = False):
# load base pipeline (no heavy quant config)
bnb_conf = None
if use_4bit and BNB_AVAILABLE:
bnb_conf = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
pipe = load_pipeline_auto(base_model_id, use_4bit=use_4bit, bnb_config=bnb_conf, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
# attempt to load adapter into target module (best-effort)
try:
if adapter_target == "unet" and hasattr(pipe, "unet"):
lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.unet))
pipe.unet = get_peft_model(pipe.unet, lcfg)
try:
pipe.unet.load_state_dict(torch.load(Path(adapter_dir) / "pytorch_model.bin"), strict=False)
except Exception:
try:
pipe.unet.load_adapter(adapter_dir)
except Exception:
pass
elif adapter_target == "transformer" and hasattr(pipe, "transformer"):
lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.transformer))
pipe.transformer = get_peft_model(pipe.transformer, lcfg)
elif adapter_target == "text_encoder" and hasattr(pipe, "text_encoder"):
lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.text_encoder))
pipe.text_encoder = get_peft_model(pipe.text_encoder, lcfg)
except Exception as e:
print("Adapter load warning", e)
pipe.to(DEVICE)
out = pipe(prompt=prompt, num_inference_steps=8)
if hasattr(out, "images"):
return out.images[0]
elif hasattr(out, "frames"):
frames = out.frames[0]
from PIL import Image
return Image.fromarray((frames[-1] * 255).clip(0,255).astype("uint8"))
raise RuntimeError("No images/frames returned")
# ------------------------
# Upload adapter to HF Hub
# ------------------------
def upload_adapter(local_dir: str, repo_id: str) -> str:
token = os.environ.get("HF_TOKEN")
if token is None:
raise RuntimeError("HF_TOKEN not set in environment for upload")
create_repo(repo_id, exist_ok=True)
upload_folder(folder_path=local_dir, repo_id=repo_id, repo_type="model", token=token)
return f"https://huggingface.co/{repo_id}"
# ------------------------
# UI: Boost info helper
# ------------------------
def boost_info_text(use_4bit: bool, enable_xformers: bool, mixed_precision: Optional[str], device_type: str):
lines = []
lines.append(f"Device: {device_type.upper()}")
if use_4bit and BNB_AVAILABLE:
lines.append("4-bit QLoRA enabled: ~4x memory saving (bitsandbytes NF4 + double quant).")
else:
lines.append("QLoRA disabled or bitsandbytes not installed.")
if enable_xformers and XFORMERS_AVAILABLE:
lines.append("xFormers/FlashAttention: memory-efficient attention enabled (faster & lower mem).")
else:
lines.append("xFormers not enabled or not installed.")
if mixed_precision:
lines.append(f"Mixed precision: {mixed_precision}")
else:
lines.append("Mixed precision: default (no automatic FP16/BF16).")
lines.append("Expected: GPU + 4-bit + xFormers = fastest. CPU + 4-bit possible but slow.")
return "\n".join(lines)
# ------------------------
# Gradio UI wiring
# ------------------------
def run_all_ui(base_model_id: str,
dataset_source: str,
csv_name: str,
task_type: str,
adapter_target_override: str,
lora_r: int,
lora_alpha: int,
epochs: int,
batch_size: int,
lr: float,
max_train_steps: int,
output_dir: str,
upload_repo: str,
use_4bit: bool,
enable_xformers: bool,
use_adalora: bool,
grad_accum: int,
mixed_precision: str,
save_every_steps: int):
# map task_type -> adapter_target if override empty
adapter_target = adapter_target_override or infer_target_for_task(task_type, base_model_id)
try:
out_dir, logs = train_lora_accelerate(
base_model_id,
dataset_source,
csv_name,
task_type,
adapter_target,
output_dir,
epochs=epochs,
batch_size=batch_size,
lr=lr,
max_train_steps=(max_train_steps if max_train_steps>0 else None),
lora_r=lora_r,
lora_alpha=lora_alpha,
use_4bit=use_4bit,
enable_xformers=enable_xformers,
use_adalora=use_adalora,
gradient_accumulation_steps=grad_accum,
mixed_precision=(mixed_precision if mixed_precision != "none" else None),
save_every_steps=save_every_steps,
)
except Exception as e:
return f"Training failed: {e}", None, None
link = None
if upload_repo:
try:
link = upload_adapter(out_dir, upload_repo)
except Exception as e:
link = f"Upload failed: {e}"
# quick test generation using first dataset prompt
try:
ds = MediaTextDataset(dataset_source, csv_name=csv_name, max_frames=5)
test_prompt = ds.df.iloc[0]["text"] if len(ds.df) > 0 else "A cat on a skateboard"
except Exception:
test_prompt = "A cat on a skateboard"
test_img = None
try:
test_img = test_generation_load_and_run(base_model_id, out_dir, adapter_target, test_prompt, use_4bit=use_4bit)
except Exception as e:
print("Test gen failed:", e)
return "\n".join(logs[-200:]), test_img, link
def build_ui():
with gr.Blocks() as demo:
gr.Markdown("# Universal LoRA Trainer — Quantization & Speedups (single-file)")
with gr.Row():
with gr.Column(scale=2):
base_model = gr.Textbox(label="Base model id (Diffusers / ChronoEdit / Qwen)", value="runwayml/stable-diffusion-v1-5")
dataset_source = gr.Textbox(label="Dataset folder or HF dataset repo (username/repo)", value="./dataset")
csv_name = gr.Textbox(label="CSV/Parquet filename", value="dataset.csv")
task_type = gr.Dropdown(label="Task type", choices=["text-image", "text-video", "prompt-lora"], value="text-image")
adapter_target_override = gr.Textbox(label="Adapter target override (leave blank for auto)", value="")
lora_r = gr.Slider(1, 64, value=8, step=1, label="LoRA rank (r)")
lora_alpha = gr.Slider(1, 128, value=16, step=1, label="LoRA alpha")
epochs = gr.Number(label="Epochs", value=1)
batch_size = gr.Number(label="Batch size (per device)", value=1)
lr = gr.Number(label="Learning rate", value=1e-4)
max_train_steps = gr.Number(label="Max train steps (0 = unlimited)", value=0)
save_every_steps = gr.Number(label="Save every steps", value=200)
output_dir = gr.Textbox(label="Local output dir for adapter", value="./adapter_out")
upload_repo = gr.Textbox(label="Upload adapter to HF repo (optional, username/repo)", value="")
with gr.Column(scale=1):
gr.Markdown("## Speed / Quantization")
use_4bit = gr.Checkbox(label="Enable 4-bit QLoRA (bitsandbytes)", value=False)
enable_xformers = gr.Checkbox(label="Enable xFormers / memory efficient attention", value=False)
use_adalora = gr.Checkbox(label="Use AdaLoRA (if available in peft)", value=False)
grad_accum = gr.Number(label="Gradient accumulation steps", value=1)
mixed_precision = gr.Radio(choices=["none", "fp16", "bf16"], value=("fp16" if torch.cuda.is_available() else "none"), label="Mixed precision")
gr.Markdown("### Boost Info")
boost_info = gr.Textbox(label="Expected boost / notes", value="", lines=6)
start_btn = gr.Button("Start Training")
with gr.Row():
logs = gr.Textbox(label="Training logs (tail)", lines=18)
sample_image = gr.Image(label="Sample generated frame after training")
upload_link = gr.Textbox(label="Upload link / status")
def on_start(base_model, dataset_source, csv_name, task_type, adapter_target_override, lora_r, lora_alpha, epochs, batch_size, lr, max_train_steps, output_dir, upload_repo, use_4bit_val, enable_xformers_val, use_adalora_val, grad_accum_val, mixed_precision_val, save_every_steps):
boost_text = boost_info_text(use_4bit_val, enable_xformers_val, mixed_precision_val, "gpu" if torch.cuda.is_available() else "cpu")
# start training (blocking)
logs_out, sample, link = run_all_ui(base_model, dataset_source, csv_name, task_type, adapter_target_override, int(lora_r), int(lora_alpha), int(epochs), int(batch_size), float(lr), int(max_train_steps), output_dir, upload_repo, use_4bit_val, enable_xformers_val, use_adalora_val, int(grad_accum_val), mixed_precision_val, int(save_every_steps))
return boost_text + "\n\n" + logs_out, sample, link
start_btn.click(on_start, inputs=[base_model, dataset_source, csv_name, task_type, adapter_target_override, lora_r, lora_alpha, epochs, batch_size, lr, max_train_steps, output_dir, upload_repo, use_4bit, enable_xformers, use_adalora, grad_accum, mixed_precision, save_every_steps], outputs=[boost_info, sample_image, upload_link])
return demo
if __name__ == "__main__":
ui = build_ui()
ui.launch(server_name="0.0.0.0", server_port=7860)