Train-Lora / app_gpu.py
rahul7star's picture
Update app_gpu.py
4139bca verified
# universal_lora_trainer_gradio.py
import spaces
import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from pathlib import Path
from torch.utils.data import Dataset, DataLoader
from peft import LoraConfig, get_peft_model
from accelerate import Accelerator
from huggingface_hub import create_repo, upload_folder, hf_hub_download
# transformers optional
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
TRANSFORMERS_AVAILABLE = True
except Exception:
TRANSFORMERS_AVAILABLE = False
# ---------------- Helpers ----------------
def is_hub_repo_like(s):
return "/" in s and not Path(s).exists()
def download_from_hf(repo_id, filename, token=None):
token = token or os.environ.get("HF_TOKEN")
return hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset", token=token)
# ---------------- Dataset ----------------
class MediaTextDataset(Dataset):
def __init__(self, source, csv_name="dataset.csv", text_columns=None, max_records=None):
self.is_hub = is_hub_repo_like(source)
token = os.environ.get("HF_TOKEN")
if self.is_hub:
file_path = download_from_hf(source, csv_name, token)
else:
file_path = Path(source) / csv_name
# fallback to parquet if CSV missing
if not Path(file_path).exists():
alt = Path(str(file_path).replace(".csv", ".parquet"))
if alt.exists():
file_path = alt
else:
raise FileNotFoundError(f"Dataset file not found: {file_path}")
self.df = pd.read_parquet(file_path) if str(file_path).endswith(".parquet") else pd.read_csv(file_path)
if max_records:
self.df = self.df.head(max_records)
self.text_columns = text_columns or ["short_prompt", "long_prompt"]
def __len__(self):
return len(self.df)
def __getitem__(self, i):
rec = self.df.iloc[i]
out = {"text": {}}
for col in self.text_columns:
out["text"][col] = rec[col] if col in rec else ""
return out
# ---------------- Model loader ----------------
def load_pipeline_auto(base_model, dtype=torch.float16):
if "gemma" in base_model.lower():
if not TRANSFORMERS_AVAILABLE:
raise RuntimeError("Transformers not installed for LLM support.")
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
return {"model": model, "tokenizer": tokenizer}
else:
raise NotImplementedError("Only Gemma LLM supported in this script.")
def find_target_modules(model):
candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
targets = [n.split(".")[-1] for n in names if any(c in n for c in candidates)]
if not targets:
targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
return targets
def unwrap_batch(batch, short_col, long_col):
if isinstance(batch, (list, tuple)):
ex = batch[0]
if "text" in ex:
return ex
if "short" in ex and "long" in ex:
return {"text": {short_col: ex.get("short",""), long_col: ex.get("long","")}}
return {"text": ex}
if isinstance(batch, dict):
first_elem = {}
is_batched = any(isinstance(v, (list, tuple, np.ndarray, torch.Tensor)) for v in batch.values())
if is_batched:
for k, v in batch.items():
try: first = v[0]
except Exception: first = v
first_elem[k] = first
if "text" in first_elem:
t = first_elem["text"]
if isinstance(t, (list, tuple)) and len(t) > 0:
return {"text": t[0] if isinstance(t[0], dict) else {short_col: t[0], long_col: ""}}
if isinstance(t, dict): return {"text": t}
return {"text": {short_col: str(t), long_col: ""}}
if ("short" in first_elem and "long" in first_elem) or (short_col in first_elem and long_col in first_elem):
s = first_elem.get(short_col, first_elem.get("short", ""))
l = first_elem.get(long_col, first_elem.get("long", ""))
return {"text": {short_col: str(s), long_col: str(l)}}
return {"text": {short_col: str(first_elem)}}
if "text" in batch and isinstance(batch["text"], dict):
return {"text": batch["text"]}
s = batch.get(short_col, batch.get("short", ""))
l = batch.get(long_col, batch.get("long", ""))
return {"text": {short_col: str(s), long_col: str(l)}}
return {"text": {short_col: str(batch), long_col: ""}}
# ---------------- LoRA Training ----------------
from tempfile import TemporaryDirectory
from accelerate import Accelerator
@spaces.GPU(duration=110)
def train_lora_stream(base_model, dataset_src, csv_name, text_cols,
epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1,
num_workers=0, max_train_records=None, hf_repo_id=None):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device=="cuda" else torch.float32
accelerator = Accelerator()
pipe = load_pipeline_auto(base_model, dtype=dtype)
model_obj = pipe["model"]
tokenizer = pipe["tokenizer"]
model_obj.train()
target_modules = find_target_modules(model_obj)
lora_config = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
lora_module = get_peft_model(model_obj, lora_config)
dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
optimizer = torch.optim.AdamW(lora_module.parameters(), lr=lr)
lora_module, optimizer, loader = accelerator.prepare(lora_module, optimizer, loader)
max_steps = 150
step_counter = 0
logs = []
yield f"[INFO] Starting LoRA training on {device.upper()} (max {max_steps} steps)...\n", 0.0
for ep in range(epochs):
yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter / max_steps
for batch in loader:
if step_counter >= max_steps:
break
ex = unwrap_batch(batch, text_cols[0], text_cols[1])
texts = ex.get("text", {})
short_text = str(texts.get(text_cols[0], "") or "")
long_text = str(texts.get(text_cols[1], "") or "")
enc = tokenizer(short_text, text_pair=long_text, return_tensors="pt",
padding="max_length", truncation=True, max_length=512)
enc = {k: v.to(accelerator.device) for k,v in enc.items()}
enc["labels"] = enc["input_ids"].clone()
outputs = lora_module(**enc)
loss = getattr(outputs, "loss", None)
if loss is None:
logits = outputs.logits if hasattr(outputs, "logits") else outputs[0]
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)),
enc["labels"].view(-1),
ignore_index=tokenizer.pad_token_id
)
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
logs.append(f"[DEBUG] Step {step_counter}, Loss: {loss.item():.6f}")
step_counter += 1
yield "\n".join(logs[-10:]), step_counter / max_steps
if step_counter >= max_steps:
break
# ---------------- Upload to HF ----------------
HF_TOKEN = os.environ.get("HF_TOKEN")
if not hf_repo_id:
raise ValueError("❌ HF repo ID required for upload.")
if not HF_TOKEN:
raise ValueError("❌ HF_TOKEN missing.")
hf_repo_id = hf_repo_id.strip()
logs.append(f"[INFO] 🚀 Uploading LoRA to Hugging Face repo: {hf_repo_id}")
create_repo(hf_repo_id, repo_type="model", exist_ok=True, token=HF_TOKEN)
with TemporaryDirectory() as tmp_dir:
lora_module.save_pretrained(tmp_dir)
upload_folder(folder_path=tmp_dir, repo_id=hf_repo_id, repo_type="model", token=HF_TOKEN)
link = f"https://huggingface.co/{hf_repo_id}"
logs.append(f"[INFO] ✅ Uploaded successfully: {link}")
yield "\n".join(logs), link
# ---------------- CPU Inference ----------------
from peft import PeftModel
from peft import PeftModel
import torch
def generate_long_prompt_cpu(base_model, lora_repo, short_prompt, max_length=200):
device = torch.device("cpu")
# Load base model in float32
pipe = load_pipeline_auto(base_model, dtype=torch.float32)
base_model_obj = pipe["model"].to(device)
tokenizer = pipe["tokenizer"]
base_model_obj.eval()
# Load LoRA adapter on CPU
lora_model = PeftModel.from_pretrained(
base_model_obj,
lora_repo,
torch_dtype=torch.float32,
device_map={"": device}
)
lora_model.eval()
# OPTIONAL: merge LoRA into base model to avoid PEFT runtime issues
merged_model = lora_model.merge_and_unload()
merged_model.eval()
# Tokenize input
input_ids = tokenizer(short_prompt, return_tensors="pt").input_ids.to(device)
# Generate safely
with torch.no_grad():
outputs = merged_model.generate(
input_ids,
max_length=max_length,
do_sample=True,
top_p=0.95,
top_k=50
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# ---------------- Gradio UI ----------------
# ---------------- Gradio UI ----------------
import gradio as gr
def run_ui():
import gradio as gr
with gr.Blocks(title="Prompt Enhancer Trainer + Inference UI") as demo:
gr.Markdown("# ✨ Prompt Enhancer Trainer + Inference Playground")
gr.Markdown("Train, test, and debug your LoRA-enhanced Gemma model easily.Use ZerpGPU to Train else CPU will work for other stuff")
gr.Markdown("""
🔗 **Quick Links:**
- [📂 View DataSet (rahul7star/prompt-enhancer-dataset-01)](https://huggingface.co/datasets/rahul7star/prompt-enhancer-dataset-01)
- [🤖 View Trained Model (rahul7star/gemma-3-270m-ccebc0)](https://huggingface.co/rahul7star/gemma-3-270m-ccebc0)
""")
with gr.Tabs():
# =========================================================
# 1️⃣ TRAIN LORA TAB
# =========================================================
with gr.Tab("Train LoRA"):
with gr.Row():
base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
dataset = gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
csvname = gr.Textbox(label="CSV/Parquet file", value="train-00000-of-00001.csv")
short_col = gr.Textbox(label="Short prompt column", value="short_prompt")
long_col = gr.Textbox(label="Long prompt column", value="long_prompt")
repo = gr.Textbox(label="HF repo to upload LoRA", value="rahul7star/gemma-3-270m-ccebc0")
with gr.Row():
batch_size = gr.Number(value=1, label="Batch size")
num_workers = gr.Number(value=0, label="DataLoader num_workers")
r = gr.Number(value=8, label="LoRA rank")
a = gr.Number(value=16, label="LoRA alpha")
ep = gr.Number(value=1, label="Epochs")
lr = gr.Number(value=1e-4, label="Learning rate")
max_records = gr.Number(value=1000, label="Max training records")
logs = gr.Textbox(label="Logs (streaming)", lines=25)
def launch_train(bm, ds, csv, sc, lc, batch, num_w, r_, a_, ep_, lr_, max_rec, repo_):
gen = train_lora_stream(
bm, ds, csv, [sc, lc],
epochs=int(ep_), lr=float(lr_), r=int(r_), alpha=int(a_),
batch_size=int(batch), num_workers=int(num_w),
max_train_records=int(max_rec), hf_repo_id=repo_
)
for item in gen:
yield item
btn = gr.Button("🚀 Start Training")
btn.click(
fn=launch_train,
inputs=[
base_model, dataset, csvname, short_col, long_col,
batch_size, num_workers, r, a, ep, lr, max_records, repo
],
outputs=[logs],
queue=True
)
# =========================================================
# 2️⃣ INFERENCE (CPU) TAB
# =========================================================
with gr.Tab("Inference (CPU)"):
inf_base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
inf_lora_repo = gr.Textbox(label="LoRA HF repo", value="rahul7star/gemma-3-270m-ccebc0")
short_prompt = gr.Textbox(label="Short prompt")
long_prompt_out = gr.Textbox(label="Generated long prompt", lines=5)
inf_btn = gr.Button("📝 Generate Long Prompt")
inf_btn.click(
fn=generate_long_prompt_cpu,
inputs=[inf_base_model, inf_lora_repo, short_prompt],
outputs=[long_prompt_out]
)
# =========================================================
# 3️⃣ SHOW TRAINABLE PARAMS TAB
# =========================================================
with gr.Tab("Show Trainable Params"):
gr.Markdown("### 🧩 View Trainable Parameters in Your LoRA-Enhanced Model")
with gr.Row():
base_model_name = gr.Textbox(label="Base Model", value="google/gemma-2b-it")
check_btn = gr.Button("🔍 Show Trainable Layers")
param_output = gr.Textbox(label="Trainable Parameters Info", lines=30)
def show_trainable_layers(base_model_name):
import torch
from peft import get_peft_model, LoraConfig
from transformers import AutoModelForCausalLM
import io
import contextlib
buf = io.StringIO()
print(f"[INFO] Loading base model: {base_model_name}", file=buf)
model = AutoModelForCausalLM.from_pretrained(base_model_name)
print("[INFO] Initializing LoRA configuration...", file=buf)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj", "k_proj", "v_proj",
"o_proj", "gate_proj", "up_proj", "down_proj"
]
)
print("[INFO] Applying LoRA adapters...", file=buf)
model = get_peft_model(model, config)
print("[INFO] Counting trainable parameters...", file=buf)
with contextlib.redirect_stdout(buf):
model.print_trainable_parameters()
print("\n[INFO] Listing all LoRA-injected layers...", file=buf)
lora_layers = [name for name, _ in model.named_modules() if "lora" in name.lower()]
if not lora_layers:
print("⚠️ No LoRA layers detected. Check target_modules configuration.", file=buf)
else:
print(f"✅ Found {len(lora_layers)} LoRA-injected submodules:\n", file=buf)
for i, layer_name in enumerate(lora_layers[:200]):
print(f" {i+1:03d}. {layer_name}", file=buf)
if len(lora_layers) > 200:
print(f"...and {len(lora_layers)-200} more layers (truncated)", file=buf)
explanation = """
────────────────────────────
### 🔍 What “Adapter (90)” Means
When you initialize LoRA on a large model like **Gemma**, the code scans the model
to find all modules that can receive LoRA layers — typically:
- **q_proj, k_proj, v_proj** → Query, Key, Value projections
- **o_proj / out_proj** → Output of attention
- **gate_proj, up_proj, down_proj** → Feed-forward MLPs
Each matching layer gets two small trainable matrices **(A, B)** injected.
So if you see:
> Adapter (90)
That means **90 total submodules** were wrapped with LoRA adapters.
You can view them above 👆, or print them programmatically with:
```python
for name, module in model.named_modules():
if "lora" in name.lower():
print(name)
"""
print(explanation, file=buf)
return buf.getvalue()
check_btn.click(show_trainable_layers, inputs=[base_model_name], outputs=[param_output])
# =========================================================
# 4️⃣ CODE DEBUG TAB
# =========================================================
with gr.Tab("Code Debug"):
gr.Markdown("### 🧩 Code Debug — Understand What's Happening Line by Line")
gr.Markdown("""
#### 🧰 Step-by-Step Breakdown
**1️⃣ `f"[INFO] Loading base model: {base_model}"`**
→ Logs which model is being loaded (e.g., `google/gemma-2b-it`)
**2️⃣ `AutoModelForCausalLM.from_pretrained(base_model)`**
→ Downloads the base Gemma model weights and tokenizer.
**3️⃣ `get_peft_model(model, config)`**
→ Wraps the model with LoRA and injects adapters into `q_proj`, `k_proj`, `v_proj`, etc.
**4️⃣ Expected console output:**
[INFO] Loading base model: google/gemma-2b-it
[INFO] Preparing dataset...
[INFO] Injecting LoRA adapters...
trainable params: 3.5M || all params: 270M || trainable%: 1.3%
**5️⃣ `trainer.train()`**
→ Starts training loop and shows live progress.
**6️⃣ `upload_file(...)`**
→ Uploads all model files to your chosen HF repo.
---
### 🔍 What “Adapter (90)” Means
When you initialize LoRA on Gemma, it finds **90 target layers** such as:
- `q_proj`, `k_proj`, `v_proj`
- `o_proj`
- `gate_proj`, `up_proj`, `down_proj`
Each layer gets small trainable matrices (A, B).
So:
> **Adapter (90)** → 90 modules modified by LoRA.
To list them:
```python
for name, module in model.named_modules():
if "lora" in name.lower():
print(name)
""")
# =========================================================
# 5️⃣ CODE EXPLAIN TAB
# =========================================================
with gr.Tab("Code Explain"):
explain_md = gr.Markdown("""
### 🧩 Universal Dynamic LoRA Trainer & Inference — Code Explanation
This project provides an **end-to-end LoRA fine-tuning and inference system** for language models like **Gemma**, built with **Gradio**, **PEFT**, and **Accelerate**.
It supports both **training new LoRAs** and **generating text** with existing ones — all in a single interface.
---
#### **1️⃣ Imports Overview**
- **Core libs:** `os`, `torch`, `gradio`, `numpy`, `pandas`
- **Training libs:** `peft` (`LoraConfig`, `get_peft_model`), `accelerate` (`Accelerator`)
- **Modeling:** `transformers` (for Gemma base model)
- **Hub integration:** `huggingface_hub` (for uploading adapters)
- **Spaces:** `spaces` — for execution within Hugging Face Spaces
---
#### **2️⃣ Dataset Loading**
- Uses a lightweight **MediaTextDataset** class to load:
- CSV / Parquet files
- or directly from a Hugging Face dataset repo
- Expects two columns:
`short_prompt` → Input text
`long_prompt` → Target expanded text
- Supports batching, missing-column checks, and configurable max record limits.
---
#### **3️⃣ Model Loading & Preparation**
- Loads **Gemma model and tokenizer** via `AutoModelForCausalLM` and `AutoTokenizer`.
- Automatically detects **target modules** (e.g. `q_proj`, `v_proj`) for LoRA injection.
- Supports `float16` or `bfloat16` precision with `Accelerator` for optimal memory usage.
---
#### **4️⃣ LoRA Training Logic**
- Core formula:
\[
W_{eff} = W + \alpha \times (B @ A)
\]
- Only **A** and **B** matrices are trainable; base model weights remain frozen.
- Configurable parameters:
`r` (rank), `alpha` (scaling), `epochs`, `lr`, `batch_size`
- Training logs stream live in the UI, showing step-by-step loss values.
- After training, the adapter is **saved locally** and **uploaded to Hugging Face Hub**.
---
#### **5️⃣ CPU Inference Mode**
- Runs entirely on **CPU**, no GPU required.
- Loads base Gemma model + trained LoRA weights (`PeftModel.from_pretrained`).
- Optionally merges LoRA with base model.
- Expands the short prompt → long descriptive text using standard generation parameters (e.g., top-p / top-k sampling).
---
#### **6️⃣ LoRA Internals Explained**
- LoRA injects low-rank matrices (A, B) into **attention Linear layers**.
- Example:
\[
Q_{new} = Q + \alpha \times (B @ A)
\]
- Significantly reduces training cost:
- Memory: ~1–2% of full model
- Compute: trains faster with minimal GPU load
- Scalable to large models like Gemma 3B / 4B with rank ≤ 16.
---
#### **7️⃣ Gradio UI Structure**
- **Train LoRA Tab:**
Configure model, dataset, LoRA parameters, and upload target.
Press **🚀 Start Training** to stream training logs live.
- **Inference (CPU) Tab:**
Type a short prompt → Generates expanded long-form version via trained LoRA.
- **Code Explain Tab:**
Detailed breakdown of logic + simulated console output below.
---
### 🧾 Example Log Simulation
```python
print(f"[INFO] Loading base model: {base_model}")
# -> Loads Gemma base model (fp16) on CUDA
# [INFO] Base model google/gemma-3-4b-it loaded successfully
print(f"[INFO] Preparing dataset from: {dataset_path}")
# -> Loads dataset or CSV file
# [DATA] 980 samples loaded, columns: short_prompt, long_prompt
print("[INFO] Initializing LoRA configuration...")
# -> Creates LoraConfig(r=8, alpha=16, target_modules=['q_proj', 'v_proj'])
# [CONFIG] LoRA applied to 96 attention layers
print("[INFO] Starting training loop...")
# [TRAIN] Step 1 | Loss: 2.31
# [TRAIN] Step 50 | Loss: 1.42
# [TRAIN] Step 100 | Loss: 0.91
# [TRAIN] Epoch 1 complete (avg loss: 1.21)
print("[INFO] Saving LoRA adapter...")
# -> Saves safetensors and config locally
print(f"[UPLOAD] Pushing adapter to {hf_repo_id}")
# -> Uploads model to Hugging Face Hub
# [UPLOAD] adapter_model.safetensors (67.7 MB)
# [SUCCESS] LoRA uploaded successfully 🚀
```
### 🧩 Universal Dynamic LoRA Trainer & Inference — Code Explanation
This project provides an **end-to-end LoRA fine-tuning and inference system** for language models like **Gemma**, built with **Gradio**, **PEFT**, and **Accelerate**.
It supports both **training new LoRAs** and **generating text** with existing ones — all in a single interface.
---
#### **1️⃣ Imports Overview**
- **Core libs:** `os`, `torch`, `gradio`, `numpy`, `pandas`
- **Training libs:** `peft` (`LoraConfig`, `get_peft_model`), `accelerate` (`Accelerator`)
- **Modeling:** `transformers` (for Gemma base model)
- **Hub integration:** `huggingface_hub` (for uploading adapters)
- **Spaces:** `spaces` — for execution within Hugging Face Spaces
---
#### **2️⃣ Dataset Loading**
- Uses a lightweight **MediaTextDataset** class to load:
- CSV / Parquet files
- or directly from a Hugging Face dataset repo
- Expects two columns:
`short_prompt` → Input text
`long_prompt` → Target expanded text
- Supports batching, missing-column checks, and configurable max record limits.
---
#### **3️⃣ Model Loading & Preparation**
- Loads **Gemma model and tokenizer** via `AutoModelForCausalLM` and `AutoTokenizer`.
- Automatically detects **target modules** (e.g. `q_proj`, `v_proj`) for LoRA injection.
- Supports `float16` or `bfloat16` precision with `Accelerator` for optimal memory usage.
---
#### **4️⃣ LoRA Training Logic**
- Core formula:
\[
W_{eff} = W + \alpha \times (B @ A)
\]
- Only **A** and **B** matrices are trainable; base model weights remain frozen.
- Configurable parameters:
`r` (rank), `alpha` (scaling), `epochs`, `lr`, `batch_size`
- Training logs stream live in the UI, showing step-by-step loss values.
- After training, the adapter is **saved locally** and **uploaded to Hugging Face Hub**.
---
#### **5️⃣ CPU Inference Mode**
- Runs entirely on **CPU**, no GPU required.
- Loads base Gemma model + trained LoRA weights (`PeftModel.from_pretrained`).
- Optionally merges LoRA with base model.
- Expands the short prompt → long descriptive text using standard generation parameters (e.g., top-p / top-k sampling).
---
#### **6️⃣ 🧠 What LoRA Does (A & B Injection Explained)**
When you fine-tune a large model (like Gemma or Llama), you’re adjusting **billions** of parameters in large weight matrices.
LoRA avoids this by **injecting two small low-rank matrices (A and B)** into selected layers instead of modifying the full weight.
---
##### **Step 1: Regular Linear Layer**
\[
y = W x
\]
Here, **W** is a huge matrix (e.g., 4096×4096).
---
##### **Step 2: LoRA Layer Modification**
Instead of updating W directly, LoRA adds a lightweight update:
\[
W' = W + \Delta W
\]
\[
\Delta W = B A
\]
Where:
- **A** ∈ ℝ^(r × d)
- **B** ∈ ℝ^(d × r)
- and **r ≪ d** (e.g., r=8 instead of 4096)
So you’re training only a *tiny fraction* of parameters.
---
##### **Step 3: Where LoRA Gets Injected**
It targets critical sub-layers such as:
- **q_proj, k_proj, v_proj** → Query, Key, Value projections in attention
- **o_proj / out_proj** → Output projection
- **gate_proj, up_proj, down_proj** → Feed-forward layers
When you see:
> `Adapter (90)`
That means 90 total layers (from these modules) were wrapped with LoRA adapters.
---
##### **Step 4: Training Efficiency**
- Base weights (`W`) stay **frozen**
- Only `(A, B)` are **trainable**
- Compute and memory are drastically reduced
| Metric | Full Fine-Tune | LoRA Fine-Tune |
|---------|----------------|----------------|
| Trainable Params | 2B+ | ~3M |
| GPU Memory | 40GB+ | <6GB |
| Time | 10–20 hrs | <1 hr |
---
##### **Step 5: Inference Equation**
At inference time:
\[
y = (W + \alpha \times B A) x
\]
Where **α** controls the strength of the adapter’s influence.
---
##### **Step 6: Visualization**
Base Layer:
y = W * x
LoRA Layer:
y = (W + B@A) * x
↑ ↑
| └── Small rank-A adapter (trainable)
└──── Small rank-B adapter (trainable)
---
##### **Step 7: Example in Code**
```python
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
lora_dropout=0.05
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
Expected output:
trainable params: 3,278,848 || all params: 2,040,000,000 || trainable%: 0.16%
""")
return demo
if __name__ == "__main__":
run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)