Spaces:
Running
Running
File size: 31,572 Bytes
ee3f61d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
# universal_lora_trainer_quant_dynamic.py
"""
Universal Dynamic LoRA Trainer (Accelerate + PEFT) with optional QLoRA 4-bit support.
- Supports CSV and Parquet dataset files (columns: file_name, text)
- Accepts dataset from a local folder or Hugging Face dataset repo id (username/repo)
- Real LoRA training (PEFT) for:
* text->image (UNet)
* text->video (ChronoEdit transformer)
* prompt-enhancer (text_encoder / QwenEdit)
- Optional:
* 4-bit quantization (bitsandbytes / QLoRA)
* xFormers / FlashAttention
* AdaLoRA (if available)
- Uses HF_TOKEN from environment for upload
- Use `accelerate launch` for multi-GPU / optimized run
"""
import os
import math
import tempfile
from pathlib import Path
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torchvision
import torchvision.transforms as T
import pandas as pd
import numpy as np
import gradio as gr
from tqdm.auto import tqdm
from huggingface_hub import create_repo, upload_folder, hf_hub_download, list_repo_files
from diffusers import DiffusionPipeline
# optional pip installs - guard imports
try:
from chronoedit_diffusers.pipeline_chronoedit import ChronoEditPipeline
CHRONOEDIT_AVAILABLE = True
except Exception:
CHRONOEDIT_AVAILABLE = False
# Qwen image edit optional
try:
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPipeline # optional name
QWENEDIT_AVAILABLE = True
except Exception:
QWENEDIT_AVAILABLE = False
# BitsAndBytes (quantization)
try:
from transformers import BitsAndBytesConfig
BNB_AVAILABLE = True
except Exception:
BitsAndBytesConfig = None
BNB_AVAILABLE = False
# xFormers
try:
import xformers # noqa
XFORMERS_AVAILABLE = True
except Exception:
XFORMERS_AVAILABLE = False
# PEFT / AdaLoRA
try:
from peft import LoraConfig, get_peft_model
try:
from peft import AdaLoraConfig # optional
ADALORA_AVAILABLE = True
except Exception:
AdaLoraConfig = None
ADALORA_AVAILABLE = False
except Exception as e:
raise RuntimeError("Install peft: pip install peft") from e
# Accelerate
try:
from accelerate import Accelerator
except Exception as e:
raise RuntimeError("Install accelerate: pip install accelerate") from e
# ------------------------
# Config
# ------------------------
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".webp", ".bmp"}
VIDEO_EXTS = {".mp4", ".mov", ".avi", ".mkv"}
# ------------------------
# Utilities
# ------------------------
def is_hub_repo_like(s: str) -> bool:
return "/" in s and not Path(s).exists()
def download_from_hf(repo_id: str, filename: str, token: Optional[str] = None, repo_type: str = "dataset") -> str:
token = token or os.environ.get("HF_TOKEN")
return hf_hub_download(repo_id=repo_id, filename=filename, use_auth_token=token, repo_type=repo_type)
def try_list_repo_files(repo_id: str, repo_type: str = "dataset", token: Optional[str] = None):
token = token or os.environ.get("HF_TOKEN")
try:
return list_repo_files(repo_id, token=token, repo_type=repo_type)
except Exception:
return []
def find_target_modules(model, candidates=("q_proj", "k_proj", "v_proj", "o_proj", "to_q", "to_k", "to_v", "proj_out", "to_out")):
names = [n for n, _ in model.named_modules()]
selected = set()
for cand in candidates:
for n in names:
if cand in n:
selected.add(n.split(".")[-1])
if not selected:
return ["to_q", "to_k", "to_v", "to_out"]
return list(selected)
# ------------------------
# Dataset class (CSV/Parquet)
# ------------------------
class MediaTextDataset(Dataset):
"""
Loads records from CSV or Parquet with columns:
- file_name (relative path in folder or filename inside HF dataset repo)
- text
"""
def __init__(self, dataset_source: str, csv_name: str = "dataset.csv", max_frames: int = 5,
image_size=(512,512), video_frame_size=(128,256), hub_token: Optional[str] = None):
self.source = dataset_source
self.is_hub = is_hub_repo_like(dataset_source)
self.max_frames = max_frames
self.image_size = image_size
self.video_frame_size = video_frame_size
self.hub_token = hub_token or os.environ.get("HF_TOKEN")
# load dataframe (CSV or parquet)
if self.is_hub:
# try CSV then parquet; specify repo_type="dataset"
searched = try_list_repo_files(self.source, repo_type="dataset", token=self.hub_token)
# prefer exact csv_name
try:
csv_local = download_from_hf(self.source, csv_name, token=self.hub_token, repo_type="dataset")
except Exception:
# try .parquet variant
alt = csv_name.replace(".csv", ".parquet") if csv_name.endswith(".csv") else csv_name + ".parquet"
csv_local = download_from_hf(self.source, alt, token=self.hub_token, repo_type="dataset")
if str(csv_local).endswith(".parquet"):
df = pd.read_parquet(csv_local)
else:
df = pd.read_csv(csv_local)
self.df = df
self.root = None
else:
root = Path(dataset_source)
csv_path = root / csv_name
parquet_path = root / csv_name.replace(".csv", ".parquet") if csv_name.endswith(".csv") else root / (csv_name + ".parquet")
if csv_path.exists():
self.df = pd.read_csv(csv_path)
elif parquet_path.exists():
self.df = pd.read_parquet(parquet_path)
else:
p = root / csv_name
if p.exists():
if p.suffix.lower() == ".parquet":
self.df = pd.read_parquet(p)
else:
self.df = pd.read_csv(p)
else:
raise FileNotFoundError(f"Can't find {csv_name} in {dataset_source}")
self.root = root
# transforms
self.image_transform = T.Compose([T.ToPILImage(), T.Resize(image_size), T.ToTensor(), T.Normalize([0.5]*3, [0.5]*3)])
self.video_transform = T.Compose([T.ToPILImage(), T.Resize(video_frame_size), T.ToTensor(), T.Normalize([0.5]*3, [0.5]*3)])
def __len__(self):
return len(self.df)
def _maybe_download_from_hub(self, file_name: str) -> str:
if self.root is not None:
p = self.root / file_name
if p.exists():
return str(p)
# else download from dataset repo
return download_from_hf(self.source, file_name, token=self.hub_token, repo_type="dataset")
def _read_video_frames(self, path: str, num_frames: int):
video_frames, _, _ = torchvision.io.read_video(str(path), pts_unit='sec')
total = len(video_frames)
if total == 0:
C, H, W = 3, self.video_frame_size[0], self.video_frame_size[1]
return torch.zeros((num_frames, C, H, W), dtype=torch.float32)
if total < num_frames:
idxs = list(range(total)) + [total-1]*(num_frames-total)
else:
idxs = np.linspace(0, total-1, num_frames).round().astype(int).tolist()
frames = []
for i in idxs:
arr = video_frames[i].numpy() if hasattr(video_frames[i], "numpy") else np.array(video_frames[i])
frames.append(self.video_transform(arr))
frames = torch.stack(frames, dim=0)
return frames
def __getitem__(self, idx):
rec = self.df.iloc[idx]
file_name = rec["file_name"]
caption = rec["text"]
if self.is_hub:
local_path = self._maybe_download_from_hub(file_name)
else:
local_path = str(Path(self.root) / file_name)
p = Path(local_path)
suffix = p.suffix.lower()
if suffix in IMAGE_EXTS:
img = torchvision.io.read_image(local_path) # [C,H,W]
if isinstance(img, torch.Tensor):
img = img.permute(1,2,0).numpy()
return {'type': 'image', 'image': self.image_transform(img), 'caption': caption, 'file_name': file_name}
elif suffix in VIDEO_EXTS:
frames = self._read_video_frames(local_path, self.max_frames) # [T,C,H,W]
return {'type': 'video', 'frames': frames, 'caption': caption, 'file_name': file_name}
else:
raise RuntimeError(f"Unsupported media type: {local_path}")
# ------------------------
# Pipeline loader with optional quantization
# ------------------------
def load_pipeline_auto(base_model_id: str, use_4bit: bool = False, bnb_config: Optional[object] = None, torch_dtype=torch.float16):
low = base_model_id.lower()
is_chrono = "chrono" in low or "wan" in low or "video" in low
is_qwen = "qwen" in low or "qwenimage" in low
# choose pipeline
if is_chrono and CHRONOEDIT_AVAILABLE:
print("Loading ChronoEdit pipeline")
# ChronoEdit may not accept quant config; try with safer call
if use_4bit and bnb_config is not None:
pipe = ChronoEditPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16) # quantized loading of chronoedit not widely supported
else:
pipe = ChronoEditPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
elif is_qwen and QWENEDIT_AVAILABLE:
print("Loading QWEN image-edit pipeline")
pipe = QwenImageEditPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
else:
# fallback to DiffusionPipeline - supports quantization_config for diffusers+transformers
print("Loading standard DiffusionPipeline:", base_model_id, "use_4bit=", use_4bit)
if use_4bit and BNB_AVAILABLE and bnb_config is not None:
pipe = DiffusionPipeline.from_pretrained(base_model_id, quantization_config=bnb_config, torch_dtype=torch.float16)
else:
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
return pipe
# ------------------------
# Auto infer adapter target
# ------------------------
def infer_target_for_task(task_type: str, model_name: str) -> str:
low = model_name.lower()
if task_type == "prompt-lora" or "qwen" in low or "qwenedit" in low:
return "text_encoder"
if task_type == "text-video" or "chrono" in low or "wan" in low:
return "transformer"
# default
return "unet"
# ------------------------
# LoRA attach (supports AdaLoRA if available)
# ------------------------
def attach_lora(pipe, adapter_target: str, r: int = 8, alpha: int = 16, dropout: float = 0.0, use_adalora: bool = False):
if adapter_target == "unet":
if not hasattr(pipe, "unet"):
raise RuntimeError("Pipeline has no UNet to attach LoRA")
target_module = pipe.unet
attr = "unet"
elif adapter_target == "transformer":
if not hasattr(pipe, "transformer"):
raise RuntimeError("Pipeline has no transformer to attach LoRA")
target_module = pipe.transformer
attr = "transformer"
elif adapter_target == "text_encoder":
if not hasattr(pipe, "text_encoder"):
# some models name it differently; try encoder attribute fallback
if hasattr(pipe, "text_encoder"):
target_module = pipe.text_encoder
attr = "text_encoder"
else:
raise RuntimeError("Pipeline has no text_encoder for prompt-loRA")
else:
target_module = pipe.text_encoder
attr = "text_encoder"
else:
raise RuntimeError("Unknown adapter_target")
target_modules = find_target_modules(target_module)
print("Detected target_modules for LoRA:", target_modules)
if use_adalora and ADALORA_AVAILABLE:
lora_config = AdaLoraConfig(
r=r,
lora_alpha=alpha,
target_modules=target_modules,
init_r=4,
lora_dropout=dropout,
)
else:
lora_config = LoraConfig(
r=r,
lora_alpha=alpha,
target_modules=target_modules,
lora_dropout=dropout,
bias="none",
task_type="SEQ_2_SEQ_LM",
)
peft_model = get_peft_model(target_module, lora_config)
setattr(pipe, attr, peft_model)
return pipe, attr
# ------------------------
# Training loop (Accelerate-aware)
# ------------------------
def train_lora_accelerate(base_model_id: str,
dataset_source: str,
csv_name: str,
task_type: str,
adapter_target_override: Optional[str],
output_dir: str,
epochs: int = 1,
batch_size: int = 1,
lr: float = 1e-4,
max_train_steps: Optional[int] = None,
lora_r: int = 8,
lora_alpha: int = 16,
use_4bit: bool = False,
enable_xformers: bool = False,
use_adalora: bool = False,
gradient_accumulation_steps: int = 1,
mixed_precision: Optional[str] = None,
save_every_steps: int = 200,
max_frames: int = 5):
# Setup Accelerator
accelerator = Accelerator(mixed_precision=mixed_precision or ("fp16" if torch.cuda.is_available() else "no")),
# Note: Accelerator is returned as a tuple if trailing comma; fix:
accelerator = accelerator if isinstance(accelerator, Accelerator) else accelerator[0]
device = accelerator.device
# prepare bitsandbytes config if requested
bnb_conf = None
if use_4bit and BNB_AVAILABLE:
bnb_conf = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
# Load pipeline (supports quant for standard diffusers)
pipe = load_pipeline_auto(base_model_id, use_4bit=use_4bit, bnb_config=bnb_conf, torch_dtype=torch.float16 if device.type == "cuda" else torch.float32)
# optionally enable memory efficient attention
if enable_xformers:
try:
if hasattr(pipe, "enable_xformers_memory_efficient_attention"):
pipe.enable_xformers_memory_efficient_attention()
elif hasattr(pipe, "enable_attention_slicing"):
pipe.enable_attention_slicing()
print("xFormers / memory efficient attention enabled.")
except Exception as e:
print("Could not enable xformers:", e)
# infer adapter target automatically if not overridden
adapter_target = adapter_target_override if adapter_target_override else infer_target_for_task(task_type, base_model_id)
print("Adapter target set to:", adapter_target)
# attach LoRA
pipe, attr = attach_lora(pipe, adapter_target, r=lora_r, alpha=lora_alpha, dropout=0.0, use_adalora=use_adalora)
# pick the peft module for optimization
peft_module = getattr(pipe, attr)
# dataset + dataloader (we use batch_size=1 collate)
dataset = MediaTextDataset(dataset_source, csv_name=csv_name, max_frames=max_frames)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True, collate_fn=lambda x: x)
# optimizer
trainable_params = [p for n,p in peft_module.named_parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(trainable_params, lr=lr)
# prepare objects with accelerator
peft_module, optimizer, dataloader = accelerator.prepare(peft_module, optimizer, dataloader)
# training loop
logs = []
global_step = 0
loss_fn = nn.MSELoss()
# scheduler setup if available
if hasattr(pipe, "scheduler"):
try:
pipe.scheduler.set_timesteps(50, device=device)
timesteps = pipe.scheduler.timesteps
except Exception:
timesteps = None
else:
timesteps = None
# Training
for epoch in range(int(epochs)):
pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
for batch in pbar:
example = batch[0]
# image flow
if example["type"] == "image":
img = example["image"].unsqueeze(0).to(device)
caption = [example["caption"]]
if not hasattr(pipe, "encode_prompt"):
raise RuntimeError("Pipeline lacks encode_prompt - cannot encode prompts")
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
prompt=caption,
negative_prompt=None,
do_classifier_free_guidance=True,
num_videos_per_prompt=1,
prompt_embeds=None,
negative_prompt_embeds=None,
max_sequence_length=512,
device=device,
)
if not hasattr(pipe, "vae"):
raise RuntimeError("Pipeline lacks VAE - required for latent conversion")
with torch.no_grad():
latents = pipe.vae.encode(img.to(device)).latent_dist.sample() * pipe.vae.config.scaling_factor
noise = torch.randn_like(latents).to(device)
if timesteps is None:
t = torch.tensor(1, device=device)
else:
t = pipe.scheduler.timesteps[torch.randint(0, len(pipe.scheduler.timesteps), (1,)).item()].to(device)
noisy_latents = pipe.scheduler.add_noise(latents, noise, t)
# forward through peft_module (unet)
out = peft_module(noisy_latents, t.expand(noisy_latents.shape[0]), encoder_hidden_states=prompt_embeds)
if hasattr(out, "sample"):
noise_pred = out.sample
elif isinstance(out, tuple):
noise_pred = out[0]
else:
noise_pred = out
loss = loss_fn(noise_pred, noise)
else:
# video flow (ChronoEdit simplified)
if not CHRONOEDIT_AVAILABLE:
raise RuntimeError("ChronoEdit training requested but not installed in environment")
frames = example["frames"].unsqueeze(0).to(device) # [1, T, C, H, W]
frames_np = frames.squeeze(0).permute(0,2,3,1).cpu().numpy().tolist()
video_tensor = pipe.video_processor.preprocess(frames_np, height=frames.shape[-2], width=frames.shape[-1]).to(device)
latents_out = pipe.prepare_latents(video_tensor, batch_size=1, num_channels_latents=pipe.vae.config.z_dim, height=video_tensor.shape[-2], width=video_tensor.shape[-1], num_frames=frames.shape[1], dtype=video_tensor.dtype, device=device, generator=None, latents=None, last_image=None)
if pipe.config.expand_timesteps:
latents, condition, first_frame_mask = latents_out
else:
latents, condition = latents_out
first_frame_mask = None
noise = torch.randn_like(latents).to(device)
t = pipe.scheduler.timesteps[torch.randint(0, len(pipe.scheduler.timesteps), (1,)).item()].to(device)
noisy_latents = pipe.scheduler.add_noise(latents, noise, t)
if pipe.config.expand_timesteps:
latent_model_input = (1 - first_frame_mask) * condition + first_frame_mask * noisy_latents
else:
latent_model_input = torch.cat([noisy_latents, condition], dim=1)
out = peft_module(hidden_states=latent_model_input, timestep=t.unsqueeze(0).expand(latent_model_input.shape[0]), encoder_hidden_states=None, encoder_hidden_states_image=None, return_dict=False)
noise_pred = out[0] if isinstance(out, tuple) else out
loss = loss_fn(noise_pred, noise)
# backward and optimizer step (accelerator)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
global_step += 1
logs.append(f"step {global_step} loss {loss.item():.6f}")
pbar.set_postfix({"loss": f"{loss.item():.6f}"})
if max_train_steps and global_step >= max_train_steps:
break
if global_step % save_every_steps == 0:
out_sub = Path(output_dir) / f"lora_step_{global_step}"
out_sub.mkdir(parents=True, exist_ok=True)
try:
peft_module.save_pretrained(str(out_sub))
except Exception:
torch.save({k: v.cpu() for k,v in peft_module.state_dict().items()}, str(out_sub / "adapter_state_dict.pt"))
print(f"Saved adapter at {out_sub}")
if max_train_steps and global_step >= max_train_steps:
break
# final save
Path(output_dir).mkdir(parents=True, exist_ok=True)
try:
peft_module.save_pretrained(output_dir)
except Exception:
torch.save({k: v.cpu() for k,v in peft_module.state_dict().items()}, str(Path(output_dir) / "adapter_state_dict.pt"))
return output_dir, logs
# ------------------------
# Test generation (best-effort)
# ------------------------
def test_generation_load_and_run(base_model_id: str, adapter_dir: Optional[str], adapter_target: str, prompt: str, use_4bit: bool = False):
# load base pipeline (no heavy quant config)
bnb_conf = None
if use_4bit and BNB_AVAILABLE:
bnb_conf = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
pipe = load_pipeline_auto(base_model_id, use_4bit=use_4bit, bnb_config=bnb_conf, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
# attempt to load adapter into target module (best-effort)
try:
if adapter_target == "unet" and hasattr(pipe, "unet"):
lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.unet))
pipe.unet = get_peft_model(pipe.unet, lcfg)
try:
pipe.unet.load_state_dict(torch.load(Path(adapter_dir) / "pytorch_model.bin"), strict=False)
except Exception:
try:
pipe.unet.load_adapter(adapter_dir)
except Exception:
pass
elif adapter_target == "transformer" and hasattr(pipe, "transformer"):
lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.transformer))
pipe.transformer = get_peft_model(pipe.transformer, lcfg)
elif adapter_target == "text_encoder" and hasattr(pipe, "text_encoder"):
lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.text_encoder))
pipe.text_encoder = get_peft_model(pipe.text_encoder, lcfg)
except Exception as e:
print("Adapter load warning", e)
pipe.to(DEVICE)
out = pipe(prompt=prompt, num_inference_steps=8)
if hasattr(out, "images"):
return out.images[0]
elif hasattr(out, "frames"):
frames = out.frames[0]
from PIL import Image
return Image.fromarray((frames[-1] * 255).clip(0,255).astype("uint8"))
raise RuntimeError("No images/frames returned")
# ------------------------
# Upload adapter to HF Hub
# ------------------------
def upload_adapter(local_dir: str, repo_id: str) -> str:
token = os.environ.get("HF_TOKEN")
if token is None:
raise RuntimeError("HF_TOKEN not set in environment for upload")
create_repo(repo_id, exist_ok=True)
upload_folder(folder_path=local_dir, repo_id=repo_id, repo_type="model", token=token)
return f"https://huggingface.co/{repo_id}"
# ------------------------
# UI: Boost info helper
# ------------------------
def boost_info_text(use_4bit: bool, enable_xformers: bool, mixed_precision: Optional[str], device_type: str):
lines = []
lines.append(f"Device: {device_type.upper()}")
if use_4bit and BNB_AVAILABLE:
lines.append("4-bit QLoRA enabled: ~4x memory saving (bitsandbytes NF4 + double quant).")
else:
lines.append("QLoRA disabled or bitsandbytes not installed.")
if enable_xformers and XFORMERS_AVAILABLE:
lines.append("xFormers/FlashAttention: memory-efficient attention enabled (faster & lower mem).")
else:
lines.append("xFormers not enabled or not installed.")
if mixed_precision:
lines.append(f"Mixed precision: {mixed_precision}")
else:
lines.append("Mixed precision: default (no automatic FP16/BF16).")
lines.append("Expected: GPU + 4-bit + xFormers = fastest. CPU + 4-bit possible but slow.")
return "\n".join(lines)
# ------------------------
# Gradio UI wiring
# ------------------------
def run_all_ui(base_model_id: str,
dataset_source: str,
csv_name: str,
task_type: str,
adapter_target_override: str,
lora_r: int,
lora_alpha: int,
epochs: int,
batch_size: int,
lr: float,
max_train_steps: int,
output_dir: str,
upload_repo: str,
use_4bit: bool,
enable_xformers: bool,
use_adalora: bool,
grad_accum: int,
mixed_precision: str,
save_every_steps: int):
# map task_type -> adapter_target if override empty
adapter_target = adapter_target_override or infer_target_for_task(task_type, base_model_id)
try:
out_dir, logs = train_lora_accelerate(
base_model_id,
dataset_source,
csv_name,
task_type,
adapter_target,
output_dir,
epochs=epochs,
batch_size=batch_size,
lr=lr,
max_train_steps=(max_train_steps if max_train_steps>0 else None),
lora_r=lora_r,
lora_alpha=lora_alpha,
use_4bit=use_4bit,
enable_xformers=enable_xformers,
use_adalora=use_adalora,
gradient_accumulation_steps=grad_accum,
mixed_precision=(mixed_precision if mixed_precision != "none" else None),
save_every_steps=save_every_steps,
)
except Exception as e:
return f"Training failed: {e}", None, None
link = None
if upload_repo:
try:
link = upload_adapter(out_dir, upload_repo)
except Exception as e:
link = f"Upload failed: {e}"
# quick test generation using first dataset prompt
try:
ds = MediaTextDataset(dataset_source, csv_name=csv_name, max_frames=5)
test_prompt = ds.df.iloc[0]["text"] if len(ds.df) > 0 else "A cat on a skateboard"
except Exception:
test_prompt = "A cat on a skateboard"
test_img = None
try:
test_img = test_generation_load_and_run(base_model_id, out_dir, adapter_target, test_prompt, use_4bit=use_4bit)
except Exception as e:
print("Test gen failed:", e)
return "\n".join(logs[-200:]), test_img, link
def build_ui():
with gr.Blocks() as demo:
gr.Markdown("# Universal LoRA Trainer — Quantization & Speedups (single-file)")
with gr.Row():
with gr.Column(scale=2):
base_model = gr.Textbox(label="Base model id (Diffusers / ChronoEdit / Qwen)", value="runwayml/stable-diffusion-v1-5")
dataset_source = gr.Textbox(label="Dataset folder or HF dataset repo (username/repo)", value="./dataset")
csv_name = gr.Textbox(label="CSV/Parquet filename", value="dataset.csv")
task_type = gr.Dropdown(label="Task type", choices=["text-image", "text-video", "prompt-lora"], value="text-image")
adapter_target_override = gr.Textbox(label="Adapter target override (leave blank for auto)", value="")
lora_r = gr.Slider(1, 64, value=8, step=1, label="LoRA rank (r)")
lora_alpha = gr.Slider(1, 128, value=16, step=1, label="LoRA alpha")
epochs = gr.Number(label="Epochs", value=1)
batch_size = gr.Number(label="Batch size (per device)", value=1)
lr = gr.Number(label="Learning rate", value=1e-4)
max_train_steps = gr.Number(label="Max train steps (0 = unlimited)", value=0)
save_every_steps = gr.Number(label="Save every steps", value=200)
output_dir = gr.Textbox(label="Local output dir for adapter", value="./adapter_out")
upload_repo = gr.Textbox(label="Upload adapter to HF repo (optional, username/repo)", value="")
with gr.Column(scale=1):
gr.Markdown("## Speed / Quantization")
use_4bit = gr.Checkbox(label="Enable 4-bit QLoRA (bitsandbytes)", value=False)
enable_xformers = gr.Checkbox(label="Enable xFormers / memory efficient attention", value=False)
use_adalora = gr.Checkbox(label="Use AdaLoRA (if available in peft)", value=False)
grad_accum = gr.Number(label="Gradient accumulation steps", value=1)
mixed_precision = gr.Radio(choices=["none", "fp16", "bf16"], value=("fp16" if torch.cuda.is_available() else "none"), label="Mixed precision")
gr.Markdown("### Boost Info")
boost_info = gr.Textbox(label="Expected boost / notes", value="", lines=6)
start_btn = gr.Button("Start Training")
with gr.Row():
logs = gr.Textbox(label="Training logs (tail)", lines=18)
sample_image = gr.Image(label="Sample generated frame after training")
upload_link = gr.Textbox(label="Upload link / status")
def on_start(base_model, dataset_source, csv_name, task_type, adapter_target_override, lora_r, lora_alpha, epochs, batch_size, lr, max_train_steps, output_dir, upload_repo, use_4bit_val, enable_xformers_val, use_adalora_val, grad_accum_val, mixed_precision_val, save_every_steps):
boost_text = boost_info_text(use_4bit_val, enable_xformers_val, mixed_precision_val, "gpu" if torch.cuda.is_available() else "cpu")
# start training (blocking)
logs_out, sample, link = run_all_ui(base_model, dataset_source, csv_name, task_type, adapter_target_override, int(lora_r), int(lora_alpha), int(epochs), int(batch_size), float(lr), int(max_train_steps), output_dir, upload_repo, use_4bit_val, enable_xformers_val, use_adalora_val, int(grad_accum_val), mixed_precision_val, int(save_every_steps))
return boost_text + "\n\n" + logs_out, sample, link
start_btn.click(on_start, inputs=[base_model, dataset_source, csv_name, task_type, adapter_target_override, lora_r, lora_alpha, epochs, batch_size, lr, max_train_steps, output_dir, upload_repo, use_4bit, enable_xformers, use_adalora, grad_accum, mixed_precision, save_every_steps], outputs=[boost_info, sample_image, upload_link])
return demo
if __name__ == "__main__":
ui = build_ui()
ui.launch(server_name="0.0.0.0", server_port=7860)
|