File size: 31,572 Bytes
ee3f61d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# universal_lora_trainer_quant_dynamic.py
"""
Universal Dynamic LoRA Trainer (Accelerate + PEFT) with optional QLoRA 4-bit support.

- Supports CSV and Parquet dataset files (columns: file_name, text)
- Accepts dataset from a local folder or Hugging Face dataset repo id (username/repo)
- Real LoRA training (PEFT) for:
    * text->image (UNet)
    * text->video (ChronoEdit transformer)
    * prompt-enhancer (text_encoder / QwenEdit)
- Optional:
    * 4-bit quantization (bitsandbytes / QLoRA)
    * xFormers / FlashAttention
    * AdaLoRA (if available)
- Uses HF_TOKEN from environment for upload
- Use `accelerate launch` for multi-GPU / optimized run
"""

import os
import math
import tempfile
from pathlib import Path
from typing import Optional, Tuple, List

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torchvision
import torchvision.transforms as T
import pandas as pd
import numpy as np
import gradio as gr
from tqdm.auto import tqdm

from huggingface_hub import create_repo, upload_folder, hf_hub_download, list_repo_files

from diffusers import DiffusionPipeline

# optional pip installs - guard imports
try:
    from chronoedit_diffusers.pipeline_chronoedit import ChronoEditPipeline
    CHRONOEDIT_AVAILABLE = True
except Exception:
    CHRONOEDIT_AVAILABLE = False

# Qwen image edit optional
try:
    from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPipeline  # optional name
    QWENEDIT_AVAILABLE = True
except Exception:
    QWENEDIT_AVAILABLE = False

# BitsAndBytes (quantization)
try:
    from transformers import BitsAndBytesConfig
    BNB_AVAILABLE = True
except Exception:
    BitsAndBytesConfig = None
    BNB_AVAILABLE = False

# xFormers
try:
    import xformers  # noqa
    XFORMERS_AVAILABLE = True
except Exception:
    XFORMERS_AVAILABLE = False

# PEFT / AdaLoRA
try:
    from peft import LoraConfig, get_peft_model
    try:
        from peft import AdaLoraConfig  # optional
        ADALORA_AVAILABLE = True
    except Exception:
        AdaLoraConfig = None
        ADALORA_AVAILABLE = False
except Exception as e:
    raise RuntimeError("Install peft: pip install peft") from e

# Accelerate
try:
    from accelerate import Accelerator
except Exception as e:
    raise RuntimeError("Install accelerate: pip install accelerate") from e

# ------------------------
# Config
# ------------------------
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".webp", ".bmp"}
VIDEO_EXTS = {".mp4", ".mov", ".avi", ".mkv"}

# ------------------------
# Utilities
# ------------------------
def is_hub_repo_like(s: str) -> bool:
    return "/" in s and not Path(s).exists()

def download_from_hf(repo_id: str, filename: str, token: Optional[str] = None, repo_type: str = "dataset") -> str:
    token = token or os.environ.get("HF_TOKEN")
    return hf_hub_download(repo_id=repo_id, filename=filename, use_auth_token=token, repo_type=repo_type)

def try_list_repo_files(repo_id: str, repo_type: str = "dataset", token: Optional[str] = None):
    token = token or os.environ.get("HF_TOKEN")
    try:
        return list_repo_files(repo_id, token=token, repo_type=repo_type)
    except Exception:
        return []

def find_target_modules(model, candidates=("q_proj", "k_proj", "v_proj", "o_proj", "to_q", "to_k", "to_v", "proj_out", "to_out")):
    names = [n for n, _ in model.named_modules()]
    selected = set()
    for cand in candidates:
        for n in names:
            if cand in n:
                selected.add(n.split(".")[-1])
    if not selected:
        return ["to_q", "to_k", "to_v", "to_out"]
    return list(selected)

# ------------------------
# Dataset class (CSV/Parquet)
# ------------------------
class MediaTextDataset(Dataset):
    """
    Loads records from CSV or Parquet with columns:
      - file_name (relative path in folder or filename inside HF dataset repo)
      - text
    """
    def __init__(self, dataset_source: str, csv_name: str = "dataset.csv", max_frames: int = 5,
                 image_size=(512,512), video_frame_size=(128,256), hub_token: Optional[str] = None):
        self.source = dataset_source
        self.is_hub = is_hub_repo_like(dataset_source)
        self.max_frames = max_frames
        self.image_size = image_size
        self.video_frame_size = video_frame_size
        self.hub_token = hub_token or os.environ.get("HF_TOKEN")

        # load dataframe (CSV or parquet)
        if self.is_hub:
            # try CSV then parquet; specify repo_type="dataset"
            searched = try_list_repo_files(self.source, repo_type="dataset", token=self.hub_token)
            # prefer exact csv_name
            try:
                csv_local = download_from_hf(self.source, csv_name, token=self.hub_token, repo_type="dataset")
            except Exception:
                # try .parquet variant
                alt = csv_name.replace(".csv", ".parquet") if csv_name.endswith(".csv") else csv_name + ".parquet"
                csv_local = download_from_hf(self.source, alt, token=self.hub_token, repo_type="dataset")
            if str(csv_local).endswith(".parquet"):
                df = pd.read_parquet(csv_local)
            else:
                df = pd.read_csv(csv_local)
            self.df = df
            self.root = None
        else:
            root = Path(dataset_source)
            csv_path = root / csv_name
            parquet_path = root / csv_name.replace(".csv", ".parquet") if csv_name.endswith(".csv") else root / (csv_name + ".parquet")
            if csv_path.exists():
                self.df = pd.read_csv(csv_path)
            elif parquet_path.exists():
                self.df = pd.read_parquet(parquet_path)
            else:
                p = root / csv_name
                if p.exists():
                    if p.suffix.lower() == ".parquet":
                        self.df = pd.read_parquet(p)
                    else:
                        self.df = pd.read_csv(p)
                else:
                    raise FileNotFoundError(f"Can't find {csv_name} in {dataset_source}")
            self.root = root

        # transforms
        self.image_transform = T.Compose([T.ToPILImage(), T.Resize(image_size), T.ToTensor(), T.Normalize([0.5]*3, [0.5]*3)])
        self.video_transform = T.Compose([T.ToPILImage(), T.Resize(video_frame_size), T.ToTensor(), T.Normalize([0.5]*3, [0.5]*3)])

    def __len__(self):
        return len(self.df)

    def _maybe_download_from_hub(self, file_name: str) -> str:
        if self.root is not None:
            p = self.root / file_name
            if p.exists():
                return str(p)
        # else download from dataset repo
        return download_from_hf(self.source, file_name, token=self.hub_token, repo_type="dataset")

    def _read_video_frames(self, path: str, num_frames: int):
        video_frames, _, _ = torchvision.io.read_video(str(path), pts_unit='sec')
        total = len(video_frames)
        if total == 0:
            C, H, W = 3, self.video_frame_size[0], self.video_frame_size[1]
            return torch.zeros((num_frames, C, H, W), dtype=torch.float32)
        if total < num_frames:
            idxs = list(range(total)) + [total-1]*(num_frames-total)
        else:
            idxs = np.linspace(0, total-1, num_frames).round().astype(int).tolist()
        frames = []
        for i in idxs:
            arr = video_frames[i].numpy() if hasattr(video_frames[i], "numpy") else np.array(video_frames[i])
            frames.append(self.video_transform(arr))
        frames = torch.stack(frames, dim=0)
        return frames

    def __getitem__(self, idx):
        rec = self.df.iloc[idx]
        file_name = rec["file_name"]
        caption = rec["text"]
        if self.is_hub:
            local_path = self._maybe_download_from_hub(file_name)
        else:
            local_path = str(Path(self.root) / file_name)
        p = Path(local_path)
        suffix = p.suffix.lower()
        if suffix in IMAGE_EXTS:
            img = torchvision.io.read_image(local_path)  # [C,H,W]
            if isinstance(img, torch.Tensor):
                img = img.permute(1,2,0).numpy()
            return {'type': 'image', 'image': self.image_transform(img), 'caption': caption, 'file_name': file_name}
        elif suffix in VIDEO_EXTS:
            frames = self._read_video_frames(local_path, self.max_frames)  # [T,C,H,W]
            return {'type': 'video', 'frames': frames, 'caption': caption, 'file_name': file_name}
        else:
            raise RuntimeError(f"Unsupported media type: {local_path}")

# ------------------------
# Pipeline loader with optional quantization
# ------------------------
def load_pipeline_auto(base_model_id: str, use_4bit: bool = False, bnb_config: Optional[object] = None, torch_dtype=torch.float16):
    low = base_model_id.lower()
    is_chrono = "chrono" in low or "wan" in low or "video" in low
    is_qwen = "qwen" in low or "qwenimage" in low
    # choose pipeline
    if is_chrono and CHRONOEDIT_AVAILABLE:
        print("Loading ChronoEdit pipeline")
        # ChronoEdit may not accept quant config; try with safer call
        if use_4bit and bnb_config is not None:
            pipe = ChronoEditPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)  # quantized loading of chronoedit not widely supported
        else:
            pipe = ChronoEditPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
    elif is_qwen and QWENEDIT_AVAILABLE:
        print("Loading QWEN image-edit pipeline")
        pipe = QwenImageEditPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
    else:
        # fallback to DiffusionPipeline - supports quantization_config for diffusers+transformers
        print("Loading standard DiffusionPipeline:", base_model_id, "use_4bit=", use_4bit)
        if use_4bit and BNB_AVAILABLE and bnb_config is not None:
            pipe = DiffusionPipeline.from_pretrained(base_model_id, quantization_config=bnb_config, torch_dtype=torch.float16)
        else:
            pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
    return pipe

# ------------------------
# Auto infer adapter target
# ------------------------
def infer_target_for_task(task_type: str, model_name: str) -> str:
    low = model_name.lower()
    if task_type == "prompt-lora" or "qwen" in low or "qwenedit" in low:
        return "text_encoder"
    if task_type == "text-video" or "chrono" in low or "wan" in low:
        return "transformer"
    # default
    return "unet"

# ------------------------
# LoRA attach (supports AdaLoRA if available)
# ------------------------
def attach_lora(pipe, adapter_target: str, r: int = 8, alpha: int = 16, dropout: float = 0.0, use_adalora: bool = False):
    if adapter_target == "unet":
        if not hasattr(pipe, "unet"):
            raise RuntimeError("Pipeline has no UNet to attach LoRA")
        target_module = pipe.unet
        attr = "unet"
    elif adapter_target == "transformer":
        if not hasattr(pipe, "transformer"):
            raise RuntimeError("Pipeline has no transformer to attach LoRA")
        target_module = pipe.transformer
        attr = "transformer"
    elif adapter_target == "text_encoder":
        if not hasattr(pipe, "text_encoder"):
            # some models name it differently; try encoder attribute fallback
            if hasattr(pipe, "text_encoder"):
                target_module = pipe.text_encoder
                attr = "text_encoder"
            else:
                raise RuntimeError("Pipeline has no text_encoder for prompt-loRA")
        else:
            target_module = pipe.text_encoder
            attr = "text_encoder"
    else:
        raise RuntimeError("Unknown adapter_target")

    target_modules = find_target_modules(target_module)
    print("Detected target_modules for LoRA:", target_modules)

    if use_adalora and ADALORA_AVAILABLE:
        lora_config = AdaLoraConfig(
            r=r,
            lora_alpha=alpha,
            target_modules=target_modules,
            init_r=4,
            lora_dropout=dropout,
        )
    else:
        lora_config = LoraConfig(
            r=r,
            lora_alpha=alpha,
            target_modules=target_modules,
            lora_dropout=dropout,
            bias="none",
            task_type="SEQ_2_SEQ_LM",
        )

    peft_model = get_peft_model(target_module, lora_config)
    setattr(pipe, attr, peft_model)
    return pipe, attr

# ------------------------
# Training loop (Accelerate-aware)
# ------------------------
def train_lora_accelerate(base_model_id: str,
                          dataset_source: str,
                          csv_name: str,
                          task_type: str,
                          adapter_target_override: Optional[str],
                          output_dir: str,
                          epochs: int = 1,
                          batch_size: int = 1,
                          lr: float = 1e-4,
                          max_train_steps: Optional[int] = None,
                          lora_r: int = 8,
                          lora_alpha: int = 16,
                          use_4bit: bool = False,
                          enable_xformers: bool = False,
                          use_adalora: bool = False,
                          gradient_accumulation_steps: int = 1,
                          mixed_precision: Optional[str] = None,
                          save_every_steps: int = 200,
                          max_frames: int = 5):

    # Setup Accelerator
    accelerator = Accelerator(mixed_precision=mixed_precision or ("fp16" if torch.cuda.is_available() else "no")),
    # Note: Accelerator is returned as a tuple if trailing comma; fix:
    accelerator = accelerator if isinstance(accelerator, Accelerator) else accelerator[0]
    device = accelerator.device

    # prepare bitsandbytes config if requested
    bnb_conf = None
    if use_4bit and BNB_AVAILABLE:
        bnb_conf = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )

    # Load pipeline (supports quant for standard diffusers)
    pipe = load_pipeline_auto(base_model_id, use_4bit=use_4bit, bnb_config=bnb_conf, torch_dtype=torch.float16 if device.type == "cuda" else torch.float32)

    # optionally enable memory efficient attention
    if enable_xformers:
        try:
            if hasattr(pipe, "enable_xformers_memory_efficient_attention"):
                pipe.enable_xformers_memory_efficient_attention()
            elif hasattr(pipe, "enable_attention_slicing"):
                pipe.enable_attention_slicing()
            print("xFormers / memory efficient attention enabled.")
        except Exception as e:
            print("Could not enable xformers:", e)

    # infer adapter target automatically if not overridden
    adapter_target = adapter_target_override if adapter_target_override else infer_target_for_task(task_type, base_model_id)
    print("Adapter target set to:", adapter_target)

    # attach LoRA
    pipe, attr = attach_lora(pipe, adapter_target, r=lora_r, alpha=lora_alpha, dropout=0.0, use_adalora=use_adalora)
    # pick the peft module for optimization
    peft_module = getattr(pipe, attr)

    # dataset + dataloader (we use batch_size=1 collate)
    dataset = MediaTextDataset(dataset_source, csv_name=csv_name, max_frames=max_frames)
    dataloader = DataLoader(dataset, batch_size=1, shuffle=True, collate_fn=lambda x: x)

    # optimizer
    trainable_params = [p for n,p in peft_module.named_parameters() if p.requires_grad]
    optimizer = torch.optim.AdamW(trainable_params, lr=lr)

    # prepare objects with accelerator
    peft_module, optimizer, dataloader = accelerator.prepare(peft_module, optimizer, dataloader)

    # training loop
    logs = []
    global_step = 0
    loss_fn = nn.MSELoss()

    # scheduler setup if available
    if hasattr(pipe, "scheduler"):
        try:
            pipe.scheduler.set_timesteps(50, device=device)
            timesteps = pipe.scheduler.timesteps
        except Exception:
            timesteps = None
    else:
        timesteps = None

    # Training
    for epoch in range(int(epochs)):
        pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
        for batch in pbar:
            example = batch[0]
            # image flow
            if example["type"] == "image":
                img = example["image"].unsqueeze(0).to(device)
                caption = [example["caption"]]

                if not hasattr(pipe, "encode_prompt"):
                    raise RuntimeError("Pipeline lacks encode_prompt - cannot encode prompts")

                prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
                    prompt=caption,
                    negative_prompt=None,
                    do_classifier_free_guidance=True,
                    num_videos_per_prompt=1,
                    prompt_embeds=None,
                    negative_prompt_embeds=None,
                    max_sequence_length=512,
                    device=device,
                )

                if not hasattr(pipe, "vae"):
                    raise RuntimeError("Pipeline lacks VAE - required for latent conversion")

                with torch.no_grad():
                    latents = pipe.vae.encode(img.to(device)).latent_dist.sample() * pipe.vae.config.scaling_factor

                noise = torch.randn_like(latents).to(device)
                if timesteps is None:
                    t = torch.tensor(1, device=device)
                else:
                    t = pipe.scheduler.timesteps[torch.randint(0, len(pipe.scheduler.timesteps), (1,)).item()].to(device)
                noisy_latents = pipe.scheduler.add_noise(latents, noise, t)

                # forward through peft_module (unet)
                out = peft_module(noisy_latents, t.expand(noisy_latents.shape[0]), encoder_hidden_states=prompt_embeds)
                if hasattr(out, "sample"):
                    noise_pred = out.sample
                elif isinstance(out, tuple):
                    noise_pred = out[0]
                else:
                    noise_pred = out

                loss = loss_fn(noise_pred, noise)

            else:
                # video flow (ChronoEdit simplified)
                if not CHRONOEDIT_AVAILABLE:
                    raise RuntimeError("ChronoEdit training requested but not installed in environment")
                frames = example["frames"].unsqueeze(0).to(device)  # [1, T, C, H, W]
                frames_np = frames.squeeze(0).permute(0,2,3,1).cpu().numpy().tolist()
                video_tensor = pipe.video_processor.preprocess(frames_np, height=frames.shape[-2], width=frames.shape[-1]).to(device)
                latents_out = pipe.prepare_latents(video_tensor, batch_size=1, num_channels_latents=pipe.vae.config.z_dim, height=video_tensor.shape[-2], width=video_tensor.shape[-1], num_frames=frames.shape[1], dtype=video_tensor.dtype, device=device, generator=None, latents=None, last_image=None)
                if pipe.config.expand_timesteps:
                    latents, condition, first_frame_mask = latents_out
                else:
                    latents, condition = latents_out
                    first_frame_mask = None

                noise = torch.randn_like(latents).to(device)
                t = pipe.scheduler.timesteps[torch.randint(0, len(pipe.scheduler.timesteps), (1,)).item()].to(device)
                noisy_latents = pipe.scheduler.add_noise(latents, noise, t)

                if pipe.config.expand_timesteps:
                    latent_model_input = (1 - first_frame_mask) * condition + first_frame_mask * noisy_latents
                else:
                    latent_model_input = torch.cat([noisy_latents, condition], dim=1)

                out = peft_module(hidden_states=latent_model_input, timestep=t.unsqueeze(0).expand(latent_model_input.shape[0]), encoder_hidden_states=None, encoder_hidden_states_image=None, return_dict=False)
                noise_pred = out[0] if isinstance(out, tuple) else out
                loss = loss_fn(noise_pred, noise)

            # backward and optimizer step (accelerator)
            accelerator.backward(loss)
            optimizer.step()
            optimizer.zero_grad()
            global_step += 1

            logs.append(f"step {global_step} loss {loss.item():.6f}")
            pbar.set_postfix({"loss": f"{loss.item():.6f}"})

            if max_train_steps and global_step >= max_train_steps:
                break

            if global_step % save_every_steps == 0:
                out_sub = Path(output_dir) / f"lora_step_{global_step}"
                out_sub.mkdir(parents=True, exist_ok=True)
                try:
                    peft_module.save_pretrained(str(out_sub))
                except Exception:
                    torch.save({k: v.cpu() for k,v in peft_module.state_dict().items()}, str(out_sub / "adapter_state_dict.pt"))
                print(f"Saved adapter at {out_sub}")

        if max_train_steps and global_step >= max_train_steps:
            break

    # final save
    Path(output_dir).mkdir(parents=True, exist_ok=True)
    try:
        peft_module.save_pretrained(output_dir)
    except Exception:
        torch.save({k: v.cpu() for k,v in peft_module.state_dict().items()}, str(Path(output_dir) / "adapter_state_dict.pt"))

    return output_dir, logs

# ------------------------
# Test generation (best-effort)
# ------------------------
def test_generation_load_and_run(base_model_id: str, adapter_dir: Optional[str], adapter_target: str, prompt: str, use_4bit: bool = False):
    # load base pipeline (no heavy quant config)
    bnb_conf = None
    if use_4bit and BNB_AVAILABLE:
        bnb_conf = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
    pipe = load_pipeline_auto(base_model_id, use_4bit=use_4bit, bnb_config=bnb_conf, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)

    # attempt to load adapter into target module (best-effort)
    try:
        if adapter_target == "unet" and hasattr(pipe, "unet"):
            lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.unet))
            pipe.unet = get_peft_model(pipe.unet, lcfg)
            try:
                pipe.unet.load_state_dict(torch.load(Path(adapter_dir) / "pytorch_model.bin"), strict=False)
            except Exception:
                try:
                    pipe.unet.load_adapter(adapter_dir)
                except Exception:
                    pass
        elif adapter_target == "transformer" and hasattr(pipe, "transformer"):
            lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.transformer))
            pipe.transformer = get_peft_model(pipe.transformer, lcfg)
        elif adapter_target == "text_encoder" and hasattr(pipe, "text_encoder"):
            lcfg = LoraConfig(r=8, lora_alpha=16, target_modules=find_target_modules(pipe.text_encoder))
            pipe.text_encoder = get_peft_model(pipe.text_encoder, lcfg)
    except Exception as e:
        print("Adapter load warning", e)

    pipe.to(DEVICE)
    out = pipe(prompt=prompt, num_inference_steps=8)
    if hasattr(out, "images"):
        return out.images[0]
    elif hasattr(out, "frames"):
        frames = out.frames[0]
        from PIL import Image
        return Image.fromarray((frames[-1] * 255).clip(0,255).astype("uint8"))
    raise RuntimeError("No images/frames returned")

# ------------------------
# Upload adapter to HF Hub
# ------------------------
def upload_adapter(local_dir: str, repo_id: str) -> str:
    token = os.environ.get("HF_TOKEN")
    if token is None:
        raise RuntimeError("HF_TOKEN not set in environment for upload")
    create_repo(repo_id, exist_ok=True)
    upload_folder(folder_path=local_dir, repo_id=repo_id, repo_type="model", token=token)
    return f"https://huggingface.co/{repo_id}"

# ------------------------
# UI: Boost info helper
# ------------------------
def boost_info_text(use_4bit: bool, enable_xformers: bool, mixed_precision: Optional[str], device_type: str):
    lines = []
    lines.append(f"Device: {device_type.upper()}")
    if use_4bit and BNB_AVAILABLE:
        lines.append("4-bit QLoRA enabled: ~4x memory saving (bitsandbytes NF4 + double quant).")
    else:
        lines.append("QLoRA disabled or bitsandbytes not installed.")
    if enable_xformers and XFORMERS_AVAILABLE:
        lines.append("xFormers/FlashAttention: memory-efficient attention enabled (faster & lower mem).")
    else:
        lines.append("xFormers not enabled or not installed.")
    if mixed_precision:
        lines.append(f"Mixed precision: {mixed_precision}")
    else:
        lines.append("Mixed precision: default (no automatic FP16/BF16).")
    lines.append("Expected: GPU + 4-bit + xFormers = fastest. CPU + 4-bit possible but slow.")
    return "\n".join(lines)

# ------------------------
# Gradio UI wiring
# ------------------------
def run_all_ui(base_model_id: str,
               dataset_source: str,
               csv_name: str,
               task_type: str,
               adapter_target_override: str,
               lora_r: int,
               lora_alpha: int,
               epochs: int,
               batch_size: int,
               lr: float,
               max_train_steps: int,
               output_dir: str,
               upload_repo: str,
               use_4bit: bool,
               enable_xformers: bool,
               use_adalora: bool,
               grad_accum: int,
               mixed_precision: str,
               save_every_steps: int):
    # map task_type -> adapter_target if override empty
    adapter_target = adapter_target_override or infer_target_for_task(task_type, base_model_id)
    try:
        out_dir, logs = train_lora_accelerate(
            base_model_id,
            dataset_source,
            csv_name,
            task_type,
            adapter_target,
            output_dir,
            epochs=epochs,
            batch_size=batch_size,
            lr=lr,
            max_train_steps=(max_train_steps if max_train_steps>0 else None),
            lora_r=lora_r,
            lora_alpha=lora_alpha,
            use_4bit=use_4bit,
            enable_xformers=enable_xformers,
            use_adalora=use_adalora,
            gradient_accumulation_steps=grad_accum,
            mixed_precision=(mixed_precision if mixed_precision != "none" else None),
            save_every_steps=save_every_steps,
        )
    except Exception as e:
        return f"Training failed: {e}", None, None

    link = None
    if upload_repo:
        try:
            link = upload_adapter(out_dir, upload_repo)
        except Exception as e:
            link = f"Upload failed: {e}"

    # quick test generation using first dataset prompt
    try:
        ds = MediaTextDataset(dataset_source, csv_name=csv_name, max_frames=5)
        test_prompt = ds.df.iloc[0]["text"] if len(ds.df) > 0 else "A cat on a skateboard"
    except Exception:
        test_prompt = "A cat on a skateboard"

    test_img = None
    try:
        test_img = test_generation_load_and_run(base_model_id, out_dir, adapter_target, test_prompt, use_4bit=use_4bit)
    except Exception as e:
        print("Test gen failed:", e)

    return "\n".join(logs[-200:]), test_img, link

def build_ui():
    with gr.Blocks() as demo:
        gr.Markdown("# Universal LoRA Trainer — Quantization & Speedups (single-file)")
        with gr.Row():
            with gr.Column(scale=2):
                base_model = gr.Textbox(label="Base model id (Diffusers / ChronoEdit / Qwen)", value="runwayml/stable-diffusion-v1-5")
                dataset_source = gr.Textbox(label="Dataset folder or HF dataset repo (username/repo)", value="./dataset")
                csv_name = gr.Textbox(label="CSV/Parquet filename", value="dataset.csv")
                task_type = gr.Dropdown(label="Task type", choices=["text-image", "text-video", "prompt-lora"], value="text-image")
                adapter_target_override = gr.Textbox(label="Adapter target override (leave blank for auto)", value="")
                lora_r = gr.Slider(1, 64, value=8, step=1, label="LoRA rank (r)")
                lora_alpha = gr.Slider(1, 128, value=16, step=1, label="LoRA alpha")
                epochs = gr.Number(label="Epochs", value=1)
                batch_size = gr.Number(label="Batch size (per device)", value=1)
                lr = gr.Number(label="Learning rate", value=1e-4)
                max_train_steps = gr.Number(label="Max train steps (0 = unlimited)", value=0)
                save_every_steps = gr.Number(label="Save every steps", value=200)
                output_dir = gr.Textbox(label="Local output dir for adapter", value="./adapter_out")
                upload_repo = gr.Textbox(label="Upload adapter to HF repo (optional, username/repo)", value="")
            with gr.Column(scale=1):
                gr.Markdown("## Speed / Quantization")
                use_4bit = gr.Checkbox(label="Enable 4-bit QLoRA (bitsandbytes)", value=False)
                enable_xformers = gr.Checkbox(label="Enable xFormers / memory efficient attention", value=False)
                use_adalora = gr.Checkbox(label="Use AdaLoRA (if available in peft)", value=False)
                grad_accum = gr.Number(label="Gradient accumulation steps", value=1)
                mixed_precision = gr.Radio(choices=["none", "fp16", "bf16"], value=("fp16" if torch.cuda.is_available() else "none"), label="Mixed precision")
                gr.Markdown("### Boost Info")
                boost_info = gr.Textbox(label="Expected boost / notes", value="", lines=6)
                start_btn = gr.Button("Start Training")
        with gr.Row():
            logs = gr.Textbox(label="Training logs (tail)", lines=18)
            sample_image = gr.Image(label="Sample generated frame after training")
            upload_link = gr.Textbox(label="Upload link / status")
        def on_start(base_model, dataset_source, csv_name, task_type, adapter_target_override, lora_r, lora_alpha, epochs, batch_size, lr, max_train_steps, output_dir, upload_repo, use_4bit_val, enable_xformers_val, use_adalora_val, grad_accum_val, mixed_precision_val, save_every_steps):
            boost_text = boost_info_text(use_4bit_val, enable_xformers_val, mixed_precision_val, "gpu" if torch.cuda.is_available() else "cpu")
            # start training (blocking)
            logs_out, sample, link = run_all_ui(base_model, dataset_source, csv_name, task_type, adapter_target_override, int(lora_r), int(lora_alpha), int(epochs), int(batch_size), float(lr), int(max_train_steps), output_dir, upload_repo, use_4bit_val, enable_xformers_val, use_adalora_val, int(grad_accum_val), mixed_precision_val, int(save_every_steps))
            return boost_text + "\n\n" + logs_out, sample, link
        start_btn.click(on_start, inputs=[base_model, dataset_source, csv_name, task_type, adapter_target_override, lora_r, lora_alpha, epochs, batch_size, lr, max_train_steps, output_dir, upload_repo, use_4bit, enable_xformers, use_adalora, grad_accum, mixed_precision, save_every_steps], outputs=[boost_info, sample_image, upload_link])
    return demo

if __name__ == "__main__":
    ui = build_ui()
    ui.launch(server_name="0.0.0.0", server_port=7860)