Qwen-Image-2509-Full / app_allfile.py
rahul7star's picture
Update app_allfile.py
e6eca42 verified
raw
history blame
9.44 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
import os
import tempfile
from huggingface_hub import hf_hub_download
# --- Model & Repo ---
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/qwen-edit-img-repo")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Camera prompts ---
BASE_PROMPTS = {
"front": "Move the camera to a front-facing position showing the full character. Background is plain white.",
"back": "Move the camera to a back-facing position showing the full character. Background is plain white.",
"left": "Move the camera to a side (left) profile view. Background is plain white.",
"right": "Move the camera to a side (right) profile view. Background is plain white.",
"45_left": "Rotate camera 45° left showing the full character",
"45_right": "Rotate camera 45° right showing the full character",
#"90_left": "Rotate camera 90° left",
#"90_right": "Rotate camera 90° right",
"top_down": "Switch to top-down view showing the full character",
"low_angle": "Switch to low-angle view",
"close_up": "Switch to close-up lens",
"medium_close_up": "Switch to medium close-up lens",
"zoom_out": "Switch to zoom out lens",
}
# --- Resolution presets ---
RESOLUTIONS = {
"1:4": (512, 2048),
"1:3": (576, 1728),
"nealy 9:16": (768, 1344),
"nealy 2:3": (832, 1216),
"3:4": (896, 1152),
}
MAX_SEED = np.iinfo(np.int32).max
# --- CPU-only upload function ---
def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
from datetime import datetime
import uuid, shutil
from huggingface_hub import HfApi
api = HfApi()
print(prompt_text)
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
if isinstance(input_image, str):
shutil.copy(input_image, tmp_img.name)
else:
input_image.save(tmp_img.name, format="PNG")
tmp_img_path = tmp_img.name
api.upload_file(
path_or_fileobj=tmp_img_path,
path_in_repo=f"{hf_folder}/input_image.png",
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
)
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(prompt_text)
api.upload_file(
path_or_fileobj=summary_file,
path_in_repo=f"{hf_folder}/summary.txt",
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
)
os.remove(tmp_img_path)
os.remove(summary_file)
return hf_folder
# --- Scheduler & model load ---
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=dtype
).to(device)
# Load LoRA weights
pipe.load_lora_weights(
"2vXpSwA7/iroiro-lora",
weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
)
pipe.fuse_lora(lora_scale=1.0)
# pipe.load_lora_weights(
# "rahul7star/qwen-char-lora",
# weight_name="qwen_lora/qwen-multiple-char.safetensors",
# )
# pipe.fuse_lora(lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- Helpers ---
def _append_prompt(base: str, extra: str) -> str:
extra = (extra or "").strip()
return (base if not extra else f"{base} {extra}").strip()
def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
generator = torch.Generator(device=device).manual_seed(seed)
result = pipe(
image=input_images if input_images else None,
prompt=prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images
return result[0]
def resize_to_preset(img: Image.Image, preset_key: str) -> Image.Image:
w, h = RESOLUTIONS[preset_key]
return img.resize((w, h), Image.LANCZOS)
def concat_images_horizontally(images, bg_color=(255, 255, 255)):
images = [img.convert("RGB") for img in images if img is not None]
if not images:
return None
h = max(img.height for img in images)
resized = []
for img in images:
if img.height != h:
w = int(img.width * (h / img.height))
img = img.resize((w, h), Image.LANCZOS)
resized.append(img)
w_total = sum(img.width for img in resized)
canvas = Image.new("RGB", (w_total, h), bg_color)
x = 0
for img in resized:
canvas.paste(img, (x, 0))
x += img.width
return canvas
# --- Generate all camera angles dynamically ---
@spaces.GPU()
def generate_turnaround(
image,
extra_prompt="",
preset_key="nealy 9:16",
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image is None:
return [None]*(len(BASE_PROMPTS)+1), seed, "❌ 入力画像をアップロードしてください"
input_image = image.convert("RGB") if isinstance(image, Image.Image) else Image.open(image).convert("RGB")
pil_images = [input_image]
results = {}
total = len(BASE_PROMPTS)
for i, (key, base_prompt) in enumerate(BASE_PROMPTS.items(), start=1):
progress(i/total, desc=f"{key} 生成中...")
prompt_full = _append_prompt(base_prompt, extra_prompt)
img = generate_single_view(pil_images, prompt_full, seed+i, num_inference_steps, true_guidance_scale)
results[key] = resize_to_preset(img, preset_key)
concat = concat_images_horizontally(list(results.values()))
return [*results.values(), concat, seed, f"✅ {len(results)}視点の画像+連結画像を生成しました"]
# --- UI ---
css = """
#col-container {margin: 0 auto; max-width: 1400px;}
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
.notice {background: #fff5f5; border: 1px solid #fca5a5; color: #7f1d1d; padding: 12px 14px; border-radius: 10px; font-weight: 600; line-height: 1.5; margin-bottom: 10px;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
input_image = gr.Image(label="入力画像", type="pil", height=500)
extra_prompt = gr.Textbox(
label="追加プロンプト(各視点プロンプト末尾に追加)",
placeholder="high detail, anime style, soft lighting, 4k",
lines=2
)
preset_dropdown = gr.Dropdown(
label="出力解像度プリセット",
choices=list(RESOLUTIONS.keys()),
value="nealy 9:16"
)
run_button = gr.Button("🎨 生成開始", variant="primary")
status_text = gr.Textbox(label="ステータス", interactive=False)
# Dynamic outputs for all angles
result_images = []
for key in BASE_PROMPTS.keys():
result_images.append(gr.Image(label=key.capitalize(), type="pil", format="png", height=400, show_download_button=True))
result_concat = gr.Image(label="連結画像(全視点)", type="pil", format="png", height=400, show_download_button=True)
with gr.Accordion("⚙️ 詳細設定", open=False):
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed_checkbox = gr.Checkbox(label="ランダムシード", value=True)
guidance_scale_slider = gr.Slider(label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_steps_slider = gr.Slider(label="生成ステップ数", minimum=1, maximum=40, step=1, value=4)
run_button.click(
fn=generate_turnaround,
inputs=[input_image, extra_prompt, preset_dropdown, seed_slider, randomize_seed_checkbox, guidance_scale_slider, num_steps_slider],
outputs=[*result_images, result_concat, seed_slider, status_text]
)
if __name__ == "__main__":
demo.launch()