File size: 9,440 Bytes
334c887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38dba2
 
 
 
 
334c887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6eca42
 
334c887
 
e6eca42
 
 
 
 
 
f9e8091
334c887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b267282
334c887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b528f0
334c887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
import os
import tempfile
from huggingface_hub import hf_hub_download

# --- Model & Repo ---
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/qwen-edit-img-repo")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# --- Camera prompts ---
BASE_PROMPTS = {
    "front": "Move the camera to a front-facing position showing the full character. Background is plain white.",
    "back": "Move the camera to a back-facing position showing the full character. Background is plain white.",
    "left": "Move the camera to a side (left) profile view. Background is plain white.",
    "right": "Move the camera to a side (right) profile view. Background is plain white.",
    "45_left": "Rotate camera 45° left showing the full character",
    "45_right": "Rotate camera 45° right showing the full character",
    #"90_left": "Rotate camera 90° left",
    #"90_right": "Rotate camera 90° right",
    "top_down": "Switch to top-down view showing the full character",
    "low_angle": "Switch to low-angle view",
    "close_up": "Switch to close-up lens",
    "medium_close_up": "Switch to medium close-up lens",
    "zoom_out": "Switch to zoom out lens",
}

# --- Resolution presets ---
RESOLUTIONS = {
    "1:4": (512, 2048),
    "1:3": (576, 1728),
    "nealy 9:16": (768, 1344),
    "nealy 2:3": (832, 1216),
    "3:4": (896, 1152),
}

MAX_SEED = np.iinfo(np.int32).max

# --- CPU-only upload function ---
def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
    from datetime import datetime
    import uuid, shutil
    from huggingface_hub import HfApi

    api = HfApi()
    print(prompt_text)
    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}/{unique_subfolder}"

    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
        if isinstance(input_image, str):
            shutil.copy(input_image, tmp_img.name)
        else:
            input_image.save(tmp_img.name, format="PNG")
        tmp_img_path = tmp_img.name

    api.upload_file(
        path_or_fileobj=tmp_img_path,
        path_in_repo=f"{hf_folder}/input_image.png",
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
    )

    summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(prompt_text)

    api.upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=f"{hf_folder}/summary.txt",
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
    )

    os.remove(tmp_img_path)
    os.remove(summary_file)
    return hf_folder

# --- Scheduler & model load ---
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)

pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    scheduler=scheduler,
    torch_dtype=dtype
).to(device)

# Load LoRA weights
pipe.load_lora_weights(
    "2vXpSwA7/iroiro-lora",
    weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
)
pipe.fuse_lora(lora_scale=1.0)

# pipe.load_lora_weights(
#     "rahul7star/qwen-char-lora",
#     weight_name="qwen_lora/qwen-multiple-char.safetensors",
# )
# pipe.fuse_lora(lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")

# --- Helpers ---
def _append_prompt(base: str, extra: str) -> str:
    extra = (extra or "").strip()
    return (base if not extra else f"{base} {extra}").strip()

def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
    generator = torch.Generator(device=device).manual_seed(seed)
    result = pipe(
        image=input_images if input_images else None,
        prompt=prompt,
        negative_prompt=" ",
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images
    
    return result[0]

def resize_to_preset(img: Image.Image, preset_key: str) -> Image.Image:
    w, h = RESOLUTIONS[preset_key]
    return img.resize((w, h), Image.LANCZOS)

def concat_images_horizontally(images, bg_color=(255, 255, 255)):
    images = [img.convert("RGB") for img in images if img is not None]
    if not images:
        return None
    h = max(img.height for img in images)
    resized = []
    for img in images:
        if img.height != h:
            w = int(img.width * (h / img.height))
            img = img.resize((w, h), Image.LANCZOS)
        resized.append(img)
    w_total = sum(img.width for img in resized)
    canvas = Image.new("RGB", (w_total, h), bg_color)
    x = 0
    for img in resized:
        canvas.paste(img, (x, 0))
        x += img.width
    return canvas

# --- Generate all camera angles dynamically ---
@spaces.GPU()
def generate_turnaround(
    image,
    extra_prompt="",
    preset_key="nealy 9:16",
    seed=42,
    randomize_seed=False,
    true_guidance_scale=1.0,
    num_inference_steps=4,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    if image is None:
        return [None]*(len(BASE_PROMPTS)+1), seed, "❌ 入力画像をアップロードしてください"

    input_image = image.convert("RGB") if isinstance(image, Image.Image) else Image.open(image).convert("RGB")
    pil_images = [input_image]
    
    results = {}
    total = len(BASE_PROMPTS)
    for i, (key, base_prompt) in enumerate(BASE_PROMPTS.items(), start=1):
        progress(i/total, desc=f"{key} 生成中...")
        prompt_full = _append_prompt(base_prompt, extra_prompt)
        img = generate_single_view(pil_images, prompt_full, seed+i, num_inference_steps, true_guidance_scale)
        results[key] = resize_to_preset(img, preset_key)

    concat = concat_images_horizontally(list(results.values()))
    return [*results.values(), concat, seed, f"✅ {len(results)}視点の画像+連結画像を生成しました"]

# --- UI ---
css = """
#col-container {margin: 0 auto; max-width: 1400px;}
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
.notice {background: #fff5f5; border: 1px solid #fca5a5; color: #7f1d1d; padding: 12px 14px; border-radius: 10px; font-weight: 600; line-height: 1.5; margin-bottom: 10px;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        input_image = gr.Image(label="入力画像", type="pil", height=500)
        extra_prompt = gr.Textbox(
            label="追加プロンプト(各視点プロンプト末尾に追加)",
            placeholder="high detail, anime style, soft lighting, 4k",
            lines=2
        )
        preset_dropdown = gr.Dropdown(
            label="出力解像度プリセット",
            choices=list(RESOLUTIONS.keys()),
            value="nealy 9:16"
        )
        run_button = gr.Button("🎨 生成開始", variant="primary")
        status_text = gr.Textbox(label="ステータス", interactive=False)

        # Dynamic outputs for all angles
        result_images = []
        for key in BASE_PROMPTS.keys():
            result_images.append(gr.Image(label=key.capitalize(), type="pil", format="png", height=400, show_download_button=True))
        result_concat = gr.Image(label="連結画像(全視点)", type="pil", format="png", height=400, show_download_button=True)

        with gr.Accordion("⚙️ 詳細設定", open=False):
            seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed_checkbox = gr.Checkbox(label="ランダムシード", value=True)
            guidance_scale_slider = gr.Slider(label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
            num_steps_slider = gr.Slider(label="生成ステップ数", minimum=1, maximum=40, step=1, value=4)

    run_button.click(
        fn=generate_turnaround,
        inputs=[input_image, extra_prompt, preset_dropdown, seed_slider, randomize_seed_checkbox, guidance_scale_slider, num_steps_slider],
        outputs=[*result_images, result_concat, seed_slider, status_text]
    )

if __name__ == "__main__":
    demo.launch()