File size: 9,440 Bytes
334c887 c38dba2 334c887 e6eca42 334c887 e6eca42 f9e8091 334c887 b267282 334c887 6b528f0 334c887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
import os
import tempfile
from huggingface_hub import hf_hub_download
# --- Model & Repo ---
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/qwen-edit-img-repo")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Camera prompts ---
BASE_PROMPTS = {
"front": "Move the camera to a front-facing position showing the full character. Background is plain white.",
"back": "Move the camera to a back-facing position showing the full character. Background is plain white.",
"left": "Move the camera to a side (left) profile view. Background is plain white.",
"right": "Move the camera to a side (right) profile view. Background is plain white.",
"45_left": "Rotate camera 45° left showing the full character",
"45_right": "Rotate camera 45° right showing the full character",
#"90_left": "Rotate camera 90° left",
#"90_right": "Rotate camera 90° right",
"top_down": "Switch to top-down view showing the full character",
"low_angle": "Switch to low-angle view",
"close_up": "Switch to close-up lens",
"medium_close_up": "Switch to medium close-up lens",
"zoom_out": "Switch to zoom out lens",
}
# --- Resolution presets ---
RESOLUTIONS = {
"1:4": (512, 2048),
"1:3": (576, 1728),
"nealy 9:16": (768, 1344),
"nealy 2:3": (832, 1216),
"3:4": (896, 1152),
}
MAX_SEED = np.iinfo(np.int32).max
# --- CPU-only upload function ---
def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
from datetime import datetime
import uuid, shutil
from huggingface_hub import HfApi
api = HfApi()
print(prompt_text)
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
if isinstance(input_image, str):
shutil.copy(input_image, tmp_img.name)
else:
input_image.save(tmp_img.name, format="PNG")
tmp_img_path = tmp_img.name
api.upload_file(
path_or_fileobj=tmp_img_path,
path_in_repo=f"{hf_folder}/input_image.png",
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
)
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(prompt_text)
api.upload_file(
path_or_fileobj=summary_file,
path_in_repo=f"{hf_folder}/summary.txt",
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
)
os.remove(tmp_img_path)
os.remove(summary_file)
return hf_folder
# --- Scheduler & model load ---
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=dtype
).to(device)
# Load LoRA weights
pipe.load_lora_weights(
"2vXpSwA7/iroiro-lora",
weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
)
pipe.fuse_lora(lora_scale=1.0)
# pipe.load_lora_weights(
# "rahul7star/qwen-char-lora",
# weight_name="qwen_lora/qwen-multiple-char.safetensors",
# )
# pipe.fuse_lora(lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- Helpers ---
def _append_prompt(base: str, extra: str) -> str:
extra = (extra or "").strip()
return (base if not extra else f"{base} {extra}").strip()
def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
generator = torch.Generator(device=device).manual_seed(seed)
result = pipe(
image=input_images if input_images else None,
prompt=prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images
return result[0]
def resize_to_preset(img: Image.Image, preset_key: str) -> Image.Image:
w, h = RESOLUTIONS[preset_key]
return img.resize((w, h), Image.LANCZOS)
def concat_images_horizontally(images, bg_color=(255, 255, 255)):
images = [img.convert("RGB") for img in images if img is not None]
if not images:
return None
h = max(img.height for img in images)
resized = []
for img in images:
if img.height != h:
w = int(img.width * (h / img.height))
img = img.resize((w, h), Image.LANCZOS)
resized.append(img)
w_total = sum(img.width for img in resized)
canvas = Image.new("RGB", (w_total, h), bg_color)
x = 0
for img in resized:
canvas.paste(img, (x, 0))
x += img.width
return canvas
# --- Generate all camera angles dynamically ---
@spaces.GPU()
def generate_turnaround(
image,
extra_prompt="",
preset_key="nealy 9:16",
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image is None:
return [None]*(len(BASE_PROMPTS)+1), seed, "❌ 入力画像をアップロードしてください"
input_image = image.convert("RGB") if isinstance(image, Image.Image) else Image.open(image).convert("RGB")
pil_images = [input_image]
results = {}
total = len(BASE_PROMPTS)
for i, (key, base_prompt) in enumerate(BASE_PROMPTS.items(), start=1):
progress(i/total, desc=f"{key} 生成中...")
prompt_full = _append_prompt(base_prompt, extra_prompt)
img = generate_single_view(pil_images, prompt_full, seed+i, num_inference_steps, true_guidance_scale)
results[key] = resize_to_preset(img, preset_key)
concat = concat_images_horizontally(list(results.values()))
return [*results.values(), concat, seed, f"✅ {len(results)}視点の画像+連結画像を生成しました"]
# --- UI ---
css = """
#col-container {margin: 0 auto; max-width: 1400px;}
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
.notice {background: #fff5f5; border: 1px solid #fca5a5; color: #7f1d1d; padding: 12px 14px; border-radius: 10px; font-weight: 600; line-height: 1.5; margin-bottom: 10px;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
input_image = gr.Image(label="入力画像", type="pil", height=500)
extra_prompt = gr.Textbox(
label="追加プロンプト(各視点プロンプト末尾に追加)",
placeholder="high detail, anime style, soft lighting, 4k",
lines=2
)
preset_dropdown = gr.Dropdown(
label="出力解像度プリセット",
choices=list(RESOLUTIONS.keys()),
value="nealy 9:16"
)
run_button = gr.Button("🎨 生成開始", variant="primary")
status_text = gr.Textbox(label="ステータス", interactive=False)
# Dynamic outputs for all angles
result_images = []
for key in BASE_PROMPTS.keys():
result_images.append(gr.Image(label=key.capitalize(), type="pil", format="png", height=400, show_download_button=True))
result_concat = gr.Image(label="連結画像(全視点)", type="pil", format="png", height=400, show_download_button=True)
with gr.Accordion("⚙️ 詳細設定", open=False):
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed_checkbox = gr.Checkbox(label="ランダムシード", value=True)
guidance_scale_slider = gr.Slider(label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_steps_slider = gr.Slider(label="生成ステップ数", minimum=1, maximum=40, step=1, value=4)
run_button.click(
fn=generate_turnaround,
inputs=[input_image, extra_prompt, preset_dropdown, seed_slider, randomize_seed_checkbox, guidance_scale_slider, num_steps_slider],
outputs=[*result_images, result_concat, seed_slider, status_text]
)
if __name__ == "__main__":
demo.launch()
|