File size: 11,660 Bytes
71f5363
7d4ee71
 
 
 
 
6571814
 
 
 
 
ec6ec95
7d4ee71
8996337
 
 
 
 
 
 
488a414
 
8996337
 
 
488a414
be8c7a4
8996337
488a414
 
 
 
8996337
488a414
 
8996337
488a414
8996337
 
488a414
 
 
 
8996337
488a414
 
 
 
 
 
 
8996337
488a414
 
 
 
 
 
 
 
8996337
488a414
 
 
 
 
 
 
 
 
 
 
 
8996337
488a414
 
8996337
488a414
 
8996337
 
 
 
 
b6713ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8996337
 
b6713ac
 
8996337
6eb3715
 
 
 
 
 
b6713ac
7b222be
bf1b84a
6eb3715
f6d4446
 
8996337
 
 
 
 
 
7d32501
 
513bf05
7d32501
 
f6d4446
8996337
6571814
 
c41048d
6571814
8996337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f071260
 
 
 
218b488
 
8996337
 
218b488
 
 
6eb3715
218b488
 
 
 
 
bc5631b
 
 
 
218b488
 
a03b5b8
 
 
 
6eb3715
a03b5b8
 
6eb3715
 
 
a03b5b8
6eb3715
 
a03b5b8
 
 
 
 
 
8996337
 
 
 
 
35a6f3d
218b488
d12bd9a
e5d1f5f
8996337
7d4ee71
 
 
306e662
7d4ee71
 
8996337
 
 
 
 
 
7d4ee71
 
d12bd9a
8996337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb3715
8996337
 
a03b5b8
8996337
 
7d4ee71
8996337
 
6eb3715
8996337
 
 
 
 
 
 
 
 
 
6eb3715
 
7d4ee71
6eb3715
 
8996337
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
 
8996337
7d4ee71
8996337
 
6eb3715
8996337
 
 
 
 
 
f071260
 
8996337
 
 
 
 
9d7a47a
 
6eb3715
218b488
6eb3715
8996337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
8996337
218b488
 
8996337
 
7d4ee71
 
 
86eb526
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
import os

import os
import spaces
import torch
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random


HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/qwen-edit-img-repo")

# --- CPU-only upload function ---
def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
    from datetime import datetime
    import tempfile, os, uuid, shutil
    from huggingface_hub import HfApi

    # Instantiate the HfApi class
    api = HfApi()
    print(prompt_text)

    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}/{unique_subfolder}"

    # Save image temporarily
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
        if isinstance(input_image, str):
            shutil.copy(input_image, tmp_img.name)
        else:
            input_image.save(tmp_img.name, format="PNG")
        tmp_img_path = tmp_img.name

    # Upload image using HfApi instance
    api.upload_file(
        path_or_fileobj=tmp_img_path,
        path_in_repo=f"{hf_folder}/input_image.png",
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
    )

    # Save prompt as summary.txt
    summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(prompt_text)

    api.upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=f"{hf_folder}/summary.txt",
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
    )

    # Cleanup
    os.remove(tmp_img_path)
    os.remove(summary_file)

    return hf_folder

# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Scheduler configuration for Lightning
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

# Initialize scheduler
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)

# Load model
pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    scheduler=scheduler,
    torch_dtype=dtype
).to(device)

pipe.load_lora_weights(
    "rahul7star/qwen-char-lora",
    weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
)
pipe.fuse_lora(lora_scale=1.0)

# pipe.load_lora_weights(
#     "rahul7star/qwen-char-lora",
#     weight_name="qwen_lora/qwen-multiple-angle.safetensors",
# )
# pipe.fuse_lora(lora_scale=1.0)

pipe.load_lora_weights(
    "rahul7star/qwen-char-lora",
    weight_name="qwen_lora/qwen-multiple-char.safetensors",
)
pipe.fuse_lora(lora_scale=1.0)


pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
PROMPTS = {
    "front": "Move the camera to a front-facing position so the full body of the character is visible. The character stands with both arms extended slightly downward and close to the thighs, keeping the body evenly balanced on both sides. The legs are positioned symmetrically with a narrow stance. The background is plain white.",
    "back": "Move the camera to a back-facing position so the full body of the character is visible. Background is plain white.",
    "left": "Move the camera to a side view (profile) from the left so the full body of the character is visible. Background is plain white.",
    "right": "Move the camera to a side view (profile) from the right so the full body of the character is visible. Background is plain white."
}

# NEW: 出力解像度プリセット
RESOLUTIONS = {
    "1:4": (512, 2048),
    "1:3": (576, 1728),
    "nealy 9:16": (768, 1344),
    "nealy 2:3": (832, 1216),
    "3:4": (896, 1152),
}

def _append_prompt(base: str, extra: str) -> str:
    extra = (extra or "").strip()
    return (base if not extra else f"{base} {extra}").strip()

def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
    generator = torch.Generator(device=device).manual_seed(seed)
    print(prompt)
    
    result = pipe(
        image=input_images if input_images else None,
        prompt=prompt,
        negative_prompt=" ",
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images
    try:
        upload_image_and_prompt_cpu(result[0], prompt)
    except Exception as e:
        print("Upload failed:", e)
    return result[0]

def concat_images_horizontally(images, bg_color=(255, 255, 255)):
    images = [img.convert("RGB") for img in images if img is not None]
    if not images:
        return None
    h = max(img.height for img in images)
    resized = []
    for img in images:
        if img.height != h:
            w = int(img.width * (h / img.height))
            img = img.resize((w, h), Image.LANCZOS)
        resized.append(img)
    w_total = sum(img.width for img in resized)
    canvas = Image.new("RGB", (w_total, h), bg_color)
    x = 0
    for img in resized:
        canvas.paste(img, (x, 0))
        x += img.width
    return canvas

# NEW: リサイズユーティリティ
def resize_to_preset(img: Image.Image, preset_key: str) -> Image.Image:
    w, h = RESOLUTIONS[preset_key]
    return img.resize((w, h), Image.LANCZOS)

@spaces.GPU()
def generate_turnaround(
    image,
    extra_prompt="",
    preset_key="nealy 9:16",  # NEW: デフォルト
    seed=42,
    randomize_seed=False,
    true_guidance_scale=1.0,
    num_inference_steps=4,
    progress=gr.Progress(track_tqdm=True),
):
    print(extra_prompt)
    try:
        upload_image_and_prompt_cpu(image, extra_prompt)
    except Exception as e:
        print("Upload failed:", e) 
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    if image is None:
        return None, None, None, None, None, seed, "エラー: 入力画像をアップロードしてください"

    if isinstance(image, Image.Image):
        input_image = image.convert("RGB")
    else:
        input_image = Image.open(image).convert("RGB")

    pil_images = [input_image]

    # 各プロンプト末尾に追記
    p_front = _append_prompt(PROMPTS["front"], extra_prompt)
    p_back  = _append_prompt(PROMPTS["back"],  extra_prompt)
    p_left  = _append_prompt(PROMPTS["left"],  extra_prompt)
    p_right = _append_prompt(PROMPTS["right"], extra_prompt)

    progress(0.25, desc="正面生成中...")
    front = generate_single_view(pil_images, p_front, seed, num_inference_steps, true_guidance_scale)

    progress(0.5, desc="背面生成中...")
    back = generate_single_view([front], p_back, seed+1, num_inference_steps, true_guidance_scale)

    progress(0.75, desc="左側面生成中...")
    left = generate_single_view([front], p_left, seed+2, num_inference_steps, true_guidance_scale)

    progress(1.0, desc="右側面生成中...")
    right = generate_single_view([front], p_right, seed+3, num_inference_steps, true_guidance_scale)

    # NEW: ここで指定プリセットにリサイズ
    front_r = resize_to_preset(front, preset_key)
    back_r  = resize_to_preset(back,  preset_key)
    left_r  = resize_to_preset(left,  preset_key)
    right_r = resize_to_preset(right, preset_key)

    # NEW: リサイズ後を連結(横:正面→右→背面→左)
    concat = concat_images_horizontally([front_r, right_r, back_r, left_r])

    return front_r, back_r, left_r, right_r, concat, seed, f"✅ {preset_key} にリサイズして4視点+連結画像を生成しました"

# --- UI ---
css = """
#col-container {margin: 0 auto; max-width: 1400px;}
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
/* 追加: 注意ボックスのスタイル */
.notice {
  background: #fff5f5;
  border: 1px solid #fca5a5;
  color: #7f1d1d;
  padding: 12px 14px;
  border-radius: 10px;
  font-weight: 600;
  line-height: 1.5;
  margin-bottom: 10px;
}
"""

with gr.Blocks(css=css) as demo:
  
    with gr.Column(elem_id="col-container"):
        

        input_image = gr.Image(label="入力画像", type="pil", height=500)

        # 追記プロンプト欄
        extra_prompt = gr.Textbox(
            label="追加プロンプト(各視点プロンプトの末尾に追記)",
            placeholder="例: high detail, anime style, soft lighting, 4k, pastel colors",
            lines=2
        )

        # NEW: 出力解像度プリセットのプルダウン
        preset_dropdown = gr.Dropdown(
            label="出力解像度プリセット",
            choices=list(RESOLUTIONS.keys()),
            value="nealy 9:16"
        )

        run_button = gr.Button("🎨 生成開始", variant="primary")
        status_text = gr.Textbox(label="ステータス", interactive=False)

        with gr.Row():
            result_front = gr.Image(label="正面", type="pil", format="png", height=400, show_download_button=True)
            result_back = gr.Image(label="背面", type="pil", format="png", height=400, show_download_button=True)
        with gr.Row():
            result_left = gr.Image(label="左側面", type="pil", format="png", height=400, show_download_button=True)
            result_right = gr.Image(label="右側面", type="pil", format="png", height=400, show_download_button=True)

        # PNG連結出力
        result_concat = gr.Image(label="連結画像(正面→右→背面→左)", type="pil", format="png", height=400, show_download_button=True)

        with gr.Accordion("⚙️ 詳細設定", open=False):
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="ランダムシード", value=True)
            true_guidance_scale = gr.Slider(label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
            num_inference_steps = gr.Slider(label="生成ステップ数", minimum=1, maximum=40, step=1, value=4)

    # NEW: クリック時に preset_dropdown を引数として渡す
    run_button.click(
        fn=generate_turnaround,
        inputs=[input_image, extra_prompt, preset_dropdown, seed, randomize_seed, true_guidance_scale, num_inference_steps],
        outputs=[result_front, result_back, result_left, result_right, result_concat, seed, status_text],
    )

if __name__ == "__main__":
    demo.launch()