File size: 7,256 Bytes
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from flask import Flask, request, jsonify
import yfinance as yf
import pandas as pd
import numpy as np
import talib
from collections import OrderedDict
import datetime

# --- Strategy Functions ---

def get_overbought_oversold_signal(recent):
    if (recent['RSI_14'] < 30).any():
        return "Bullish"
    elif (recent['RSI_14'] > 70).any():
        return "Bearish"
    else:
        return "Neutral"

def get_rsi_crossover_signal(rsi5, rsi14):    
    
    for i in range(len(rsi5) - 1):
        older_rsi5 = rsi5[i]
        newer_rsi5 = rsi5[i + 1]
        older_rsi14 = rsi14[i]
        newer_rsi14 = rsi14[i + 1]
        
        # Bullish crossover (MACD crosses above Signal)
        if older_rsi5 <= older_rsi14 and newer_rsi5 > newer_rsi14:
            return "Bullish"
        # Bearish crossover (MACD crosses below Signal)
        elif older_rsi5 >= older_rsi14 and newer_rsi5 < newer_rsi14:
            return "Bearish"
    
    return "Neutral"



def get_mean_reversion_signal(df):
    rsi = df['RSI_5']
    if len(rsi) < 6:
        return "Neutral"

    # Check for crossover below 20 in last 5 entries
    buy_signal = ((rsi < 20) & (rsi.shift(1) >= 20)).tail(5).any()
    sell_signal = ((rsi > 80) & (rsi.shift(1) <= 80)).tail(5).any()

    if buy_signal:
        return "Bullish"
    elif sell_signal:
        return "Bearish"
    else:
        return "Neutral"


def get_bollinger_rsi_signal(recent):
    buy = ((recent['close'].to_numpy().flatten() < recent['Lower_BB']) & (recent['RSI_14'] < 30)).any()
    sell = ((recent['close'].to_numpy().flatten() > recent['Upper_BB']) & (recent['RSI_14'] > 70)).any()
    if buy:
        return "Bullish"
    elif sell:
        return "Bearish"
    else:
        return "Neutral"


def get_rsi_with_ma_signal(recent):
    buy = ((recent['close'].to_numpy().flatten() > recent['MA_20']) & (recent['RSI_14'] > 50)).any()
    sell = ((recent['close'].to_numpy().flatten() < recent['MA_20']) & (recent['RSI_14'] < 50)).any()
    if buy:
        return "Bullish"
    elif sell:
        return "Bearish"
    else:
        return "Neutral"

def get_rsi_50_trend_signal(recent):
    if (recent['RSI_14'] > 50).all():
        return "Bullish"
    elif (recent['RSI_14'] < 50).all():
        return "Bearish"
    else:
        return "Neutral"


def get_swing_rejection_signal(rsi14):
    
    r1, r2, r3, r4, r5, r6 = rsi14

    if (
        r1 < 30 and
        r2 > r1 and
        r3 < r2 and r3 > r1 and
        r4 > r3 and
        (r5 > r2 or r6 > r2) and
        r6 > 30
    ):
        return "Bullish"

    elif (
        r1 > 70 and
        r2 < r1 and
        r3 > r2 and r3 < r1 and
        r4 < r3 and
        (r5 < r2 or r6 < r2) and
        r6 < 70
    ):
        return "Bearish"

    return "Neutral"


def is_pivot_low(prices, idx, left=5, right=5):
    """Check if current point is a pivot low"""
    if idx < left or idx + right >= len(prices):
        return False
    return all(prices[idx] < prices[idx - i] and prices[idx] < prices[idx + i] for i in range(1, left + 1))

def is_pivot_high(prices, idx, left=5, right=5):
    """Check if current point is a pivot high"""
    if idx < left or idx + right >= len(prices):
        return False
    return all(prices[idx] > prices[idx - i] and prices[idx] > prices[idx + i] for i in range(1, left + 1))

def get_rsi_divergence_signal(df):
    df = df.dropna().reset_index(drop=True)
    prices = df['close'].values
    rsi = df['RSI_14'].values

    left = 5
    right = 5
    max_range = 20

    recent_idx = len(prices) - 1  # latest candle
    start_idx = max(recent_idx - max_range, left)

    for i in range(recent_idx - 1, start_idx - 1, -1):
        if is_pivot_low(prices, i, left, right) and is_pivot_low(rsi, i, left, right):
            # Regular Bullish Divergence
            if prices[recent_idx] < prices[i] and rsi[recent_idx] > rsi[i]:
                return "Bullish"

        if is_pivot_high(prices, i, left, right) and is_pivot_high(rsi, i, left, right):
            # Regular Bearish Divergence
            if prices[recent_idx] > prices[i] and rsi[recent_idx] < rsi[i]:
                return "Bearish"

    return "Neutral"


# --- Master RSI Strategy Function ---

def rsi_strategies(df):

    close_prices = df['close']
   
    # Calculate all indicators
    df['RSI_14'] = talib.RSI(close_prices, timeperiod=14)
    df['RSI_5'] = talib.RSI(close_prices, timeperiod=5)
    df['MA_20'] = talib.SMA(close_prices, timeperiod=20)
    df['Upper_BB'], df['Middle_BB'], df['Lower_BB'] = talib.BBANDS(close_prices, timeperiod=20)

    
    # Ensure all calculations are added to df before slicing
    recent = df.tail(5)
    

    signals = OrderedDict([
    ("RSI 14", round(df[['RSI_14']].iloc[-1][0], 2)),
    ("Overbought/Oversold", get_overbought_oversold_signal(recent)),
    ("RSI Swing Rejection", get_swing_rejection_signal(df['RSI_14'].tail(6))),
    ("RSI Divergence", get_rsi_divergence_signal(df)),
    ("RSI_Bollinger Band", get_bollinger_rsi_signal(recent)),
    ("RSI 5/14 Crossover", get_rsi_crossover_signal(df['RSI_5'].tail(5),df['RSI_14'].tail(5))),
    ("RSI Trend 50 Confirmation", get_rsi_50_trend_signal(recent)),
    ("RSI_MA", get_rsi_with_ma_signal(recent)),
    ("Mean Reversion", get_mean_reversion_signal(df[['RSI_5']].tail(6)))
        ])


    # Weightage for each signal
    rsi_signal_weights = {
        "Overbought/Oversold": 15,
        "RSI Swing Rejection": 15,
        "RSI Divergence": 15,
        "RSI_Bollinger Band": 15,
        "RSI 5/14 Crossover": 10,                 
        "RSI Trend 50 Confirmation": 10,
        "RSI_MA": 10,
        "Mean Reversion": 10    
        
    }
    
    # Calculate weighted score
    total_score = 0
    for strategy, weight in rsi_signal_weights.items():
        signal = signals[strategy]
        if signal == "Bullish":
            total_score += weight
        elif signal == "Neutral":
            total_score += weight * 0.5
        # Bearish gives 0 score

    overall_percentage = round((total_score / sum(rsi_signal_weights.values())) * 100, 2)

    

    # Final output signal
    if overall_percentage >= 60:
        final_signal = "Buy"
    elif overall_percentage <= 40:
        final_signal = "DBuy"
    else:
        final_signal = "Neutral"
    

    return signals, overall_percentage, final_signal

def extract_series(data, column_name, days=100):
    series = data[[column_name]].dropna().tail(days)
    series.index = series.index.strftime('%Y-%m-%d')
    return series[column_name].round(2).to_dict()

def get_rsi_trade_signal(data):    

    rsi_signals, overallscore, final_signal = rsi_strategies(data)

    return {     
        
        "rsi_signals": rsi_signals,
        "rsi_score": overallscore,
        "rsi_final_signal": final_signal,
        "rsi_14_last_2_years": extract_series(data, 'RSI_14'),
        "rsi_5_last_2_years": extract_series(data, 'RSI_5'),
        "ma": extract_series(data, 'MA_20'),
        "close": extract_series(data, 'close'),
        "open": extract_series(data, 'open'),
        "high": extract_series(data, 'high'),
        "low": extract_series(data, 'low'),
        "lowerbb": extract_series(data, 'Lower_BB'),
        "upperbb": extract_series(data, 'Upper_BB')
    }