File size: 7,077 Bytes
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from flask import Flask, request, jsonify
import yfinance as yf
import pandas as pd
import numpy as np
import talib
import datetime


# Detect recent trend (uptrend or downtrend)
def detect_trend(data, lookback_days=7):
    recent_data = data.iloc[-lookback_days:]
    closes = recent_data['close'].values

    if closes[-1] > closes[0]:
        return "Uptrend"
    elif closes[-1] < closes[0]:
        return "Downtrend"
    else:
        return "Sideways"

# Fibonacci Retracement Pullback Strategy
def fibonacci_retracement_bounce(data, fib_levels=[0.382, 0.5, 0.618], tolerance=0.005, lookback_days=7):
    last_close = data['close'].iloc[-1]

    # Detect recent trend
    trend = detect_trend(data, lookback_days)

    # Use recent high/low
    recent_data = data.iloc[-lookback_days:]
    swing_high = recent_data['high'].max()
    swing_low = recent_data['low'].min()

    retracement_levels = {level: swing_high - (swing_high - swing_low) * level for level in fib_levels}

    nearest_level = None
    min_deviation = float('inf')

    for level, price_level in retracement_levels.items():
        deviation = abs(last_close - price_level) / price_level
        if deviation < min_deviation:
            min_deviation = deviation
            nearest_level = (level, price_level)

    if nearest_level:
        _, level_price = nearest_level
        if min_deviation <= tolerance:
            if trend == "Uptrend" and last_close > level_price:
                return "Bullish"
            elif trend == "Downtrend" and last_close < level_price:
                return "Bearish"

    return "Neutral"

# 2. Fibonacci Breakout (Retracement Break) Strategy

def fibonacci_breakout(data, fib_threshold=0.618, lookback_days=7, check_candles=3, tolerance=0.005):
    recent_data = data.iloc[-lookback_days:]
    last_data = data.iloc[-check_candles:]

    swing_high = recent_data['high'].max()
    swing_low = recent_data['low'].min()

    fib_level_price = swing_high - (swing_high - swing_low) * fib_threshold

    # Check last few candles
    crossed_above = 0
    crossed_below = 0

    for i in range(len(last_data)):
        close_price = last_data['close'].iloc[i]
        if close_price > fib_level_price * (1 + tolerance):
            crossed_above += 1
        elif close_price < fib_level_price * (1 - tolerance):
            crossed_below += 1

    # Decision
    if crossed_above == check_candles:
        return "Bullish"
    elif crossed_below == check_candles:
        return "Bearish"
    else:
        return "Neutral"


# 3. Golden Pocket Reversal Strategy

def calculate_fib_levels(high, low):
    """Calculate Fibonacci retracement levels"""
    diff = high - low
    return {
        '23.6%': high - 0.236 * diff,
        '38.2%': high - 0.382 * diff,
        '50%': high - 0.5 * diff,
        '61.8%': high - 0.618 * diff,
        '65%': high - 0.65 * diff,
        '78.6%': high - 0.786 * diff
    }

def golden_pocket_reversal_strategy(data, lookback_period=7):
    """
    Golden Pocket Reversal Strategy (61.8% - 65%)
    
    Parameters:
    - data: DataFrame with columns ['high', 'low', 'close']
    - lookback_period: Number of periods to consider for swing high/low
    
    Returns:
    - 'bullish' if bullish reversal signal detected
    - 'bearish' if bearish reversal signal detected
    - 'neutral' if no clear signal
    """
    
    if len(data) < lookback_period + 1:
        return "neutral"
    
    # Get recent swing high and low
    recent_high = data['high'].rolling(lookback_period).max().iloc[-1]
    recent_low = data['low'].rolling(lookback_period).min().iloc[-1]
    
    # Calculate Fibonacci levels
    fib_levels = calculate_fib_levels(recent_high, recent_low)
    golden_zone_low = fib_levels['65%']
    golden_zone_high = fib_levels['61.8%']
    
    # Get recent price action
    recent_close = data['close'].iloc[-1]
    prev_close = data['close'].iloc[-2]
    
    # Check if price is in the golden pocket zone (61.8% - 65%)
    in_golden_zone = golden_zone_low <= recent_close <= golden_zone_high
    
    if not in_golden_zone:
        return "Neutral"
    
    # Check for bullish reversal (price coming from below)
    if recent_close > prev_close and prev_close < golden_zone_low:
        # Additional confirmation - price closed above previous candle's high
        if recent_close > data['high'].iloc[-2]:
            return "Bullish"
    
    # Check for bearish reversal (price coming from above)
    elif recent_close < prev_close and prev_close > golden_zone_high:
        # Additional confirmation - price closed below previous candle's low
        if recent_close < data['low'].iloc[-2]:
            return "Bearish"
    
    return "Neutral" 
    
# 4. Fibonacci Confluence Strategy

def fibonacci_confluence_signal(data, fib_level=0.618, lookback_days=5, ema_period=9, tolerance=0.005):
   
    # Calculate EMA9
    data['EMA9'] = talib.EMA(data['close'], timeperiod=ema_period)

    # Get recent data for swing high/low
    recent = data.iloc[-lookback_days:]
    swing_high = recent['high'].max()
    swing_low = recent['low'].min()

    # Calculate Fibonacci level
    fib_price = swing_high - (swing_high - swing_low) * fib_level

    # Get latest candle data
    current_close = data.iloc[-1]['close']
    current_ema = data.iloc[-1]['EMA9']

    # Check if price is within tolerance of Fibonacci level
    if abs(current_close - fib_price) / fib_price <= tolerance:
        if current_close > current_ema:
            return 'Bullish'
        elif current_close < current_ema:
            return 'Bearish'
    
    return 'Neutral'






# ======================
# Main Fibonacci Strategy Aggregator
# ======================

def fibonacci_strategies(data):
   
    signals = {
        "Fibonacci Retracement Bounce": fibonacci_retracement_bounce(data),
        "Fibonacci Breakout": fibonacci_breakout(data),
        "Golden Pocket Reversal": golden_pocket_reversal_strategy(data),
        "Fibonacci Confluence": fibonacci_confluence_signal(data)
    }

    weights = {
        "Fibonacci Retracement Bounce": 30,
        "Fibonacci Breakout": 25,
        "Golden Pocket Reversal": 30,
        "Fibonacci Confluence": 15
    }

    total_score = 0
    for strategy, weight in weights.items():
        signal = signals[strategy]
        if signal == "Bullish":
            total_score += weight
        elif signal == "Neutral":
            total_score += weight * 0.5

    overall_percentage = round((total_score / sum(weights.values())) * 100, 2)

    if overall_percentage >= 60:
        final_signal = "Buy"
    elif overall_percentage <= 40:
        final_signal = "DBuy"
    else:
        final_signal = "Neutral"

    return signals, overall_percentage, final_signal



# ======================
# API-style Function
# ======================

def get_fibonacci_trade_signal(data):
    fib_signals, overallscore, final_signal = fibonacci_strategies(data)
    return {
        "fib_signals": fib_signals,
        "fib_score": overallscore,
        "fib_final_signal": final_signal
    }