File size: 4,708 Bytes
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from flask import Flask, request, jsonify
import yfinance as yf
import pandas as pd
import numpy as np
import talib
import datetime

# Calculate ADX, +DI, and -DI values
def calculate_adx(data, period=14):
    high_prices = data['high']
    low_prices = data['low']
    close_prices = data['close']

    adx = talib.ADX(high_prices, low_prices, close_prices, timeperiod=period)
    plus_di = talib.PLUS_DI(high_prices, low_prices, close_prices, timeperiod=period)
    minus_di = talib.MINUS_DI(high_prices, low_prices, close_prices, timeperiod=period)

    return adx, plus_di, minus_di

# Detect ADX crossover (directional indicators +DI and -DI)
def adx_di_crossover_strategy(plus_di, minus_di, adx, threshold=20, lookback_days=5):
    # We will loop over the last `lookback_days` to check for crossovers
    for i in range(-lookback_days, 0):
        # Check if ADX is above the threshold
        if adx[i] > threshold:
            # Bullish condition: +DI crosses above -DI and ADX is above threshold
            if plus_di[i] > minus_di[i] and plus_di[i - 1] <= minus_di[i - 1]:
                return "Bullish"
            # Bearish condition: -DI crosses above +DI and ADX is above threshold
            elif minus_di[i] > plus_di[i] and minus_di[i - 1] <= plus_di[i - 1]:
                return "Bearish"
    
    return "Neutral"

#ADX Breakout strategy
def adx_breakout_strategy(data, adx, threshold=25):
   
    # Detect breakout condition (ADX above 25, price breaking resistance/support)
    if adx[-1] > threshold:
        if data['close'][-1] > data['high'][-2]:  # Bullish breakout
            return "Bullish"
        elif data['close'][-1] < data['low'][-2]:  # Bearish breakout
            return "Bearish"
    
    return "Neutral"

# ADX Slope Strategy
def get_adx_slope_signal(adx, days=5, threshold=0.1):    
    total_slope = 0

    # Calculate slope for each of the last `days`
    for i in range(-days, -1):
        slope = adx[i + 1] - adx[i]
        total_slope += slope

    # Average slope
    avg_slope = total_slope / (days - 1)

    if avg_slope > threshold:
        return "Bullish"
    elif avg_slope < -threshold:
        return "Bearish"
    else:
        return "Neutral"

# ADX Divergence Strategy
def adx_divergence_strategy(data, adx, threshold=25):
    """
    Detects divergence between price and ADX.
    A divergence occurs when price makes a new high/low, but ADX does not follow the same direction.
    """
    price_high = data['high']
    price_low = data['low']

    # Checking for divergence
    price_divergence_bullish = price_high[-1] > price_high[-2] and adx[-1] < adx[-2]
    price_divergence_bearish = price_low[-1] < price_low[-2] and adx[-1] > adx[-2]

    if price_divergence_bullish:
        return "Bullish"
    elif price_divergence_bearish:
        return "Bearish"
    return "Neutral"


# Main ADX strategy function
def adx_strategies(data):
   
    # Calculate ADX, +DI, and -DI
    adx, plus_di, minus_di = calculate_adx(data)

    signals = {
        "ADX": round(adx.iloc[-1], 2),        
        "ADX + DI Crossover": adx_di_crossover_strategy(plus_di, minus_di, adx),
        "ADX Breakout": adx_breakout_strategy(data, adx),       
        "ADX Slope": get_adx_slope_signal(adx[-5:]),
        "ADX Divergence": adx_divergence_strategy(data, adx)
    }

    weights = {
        "ADX + DI Crossover": 35,
        "ADX Breakout": 30,     
        "ADX Slope": 20,
        "ADX Divergence": 15        
    }

    total_score = 0
    for strategy, weight in weights.items():
        signal = signals[strategy]
        if signal == "Bullish":
            total_score += weight
        elif signal == "Neutral":
            total_score += weight * 0.5

    overall_percentage = round((total_score / sum(weights.values())) * 100, 2)

    if overall_percentage >= 60:
        final_signal = "Buy"
    elif overall_percentage <= 40:
        final_signal = "DBuy"
    else:
        final_signal = "Neutral"

    return signals, overall_percentage, final_signal,adx, plus_di, minus_di


def extract_series(data, series, days=100):
    series = pd.Series(series).dropna().tail(days)
    series.index = data.index[-len(series):]
    series.index = series.index.strftime('%Y-%m-%d')
    return series.round(2).to_dict()

# API-style function
def get_adx_trade_signal(data):
    adx_signals, overallscore, final_signal,adx, plus_di, minus_di = adx_strategies(data)
    return {
        "adx_signals": adx_signals,
        "adx_score": overallscore,
        "adx_final_signal": final_signal,
        "ADX_Indicator": extract_series(data, adx),
        "PLUS_DI": extract_series(data, plus_di),
        "MINUS_DI": extract_series(data, minus_di) 
    }