Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
from __future__ import annotations
|
|
|
|
| 2 |
import os
|
| 3 |
-
from typing import
|
| 4 |
-
import spaces
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
import torch
|
| 8 |
-
from transformers import
|
| 9 |
|
| 10 |
# ----------------------
|
| 11 |
# Config
|
|
@@ -19,6 +20,7 @@ DEFAULT_SYSTEM_PROMPT = (
|
|
| 19 |
|
| 20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
|
|
|
|
| 22 |
def load_model(model_id: str = MODEL_ID):
|
| 23 |
"""Load tokenizer and model, with a reasonable dtype and device fallback."""
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
@@ -36,16 +38,25 @@ def load_model(model_id: str = MODEL_ID):
|
|
| 36 |
end_token_ids = tokenizer.encode(end_token, add_special_tokens=False)
|
| 37 |
end_conv_token_ids = tokenizer.encode(end_conv_token, add_special_tokens=False)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
bad_words_ids = (
|
| 42 |
[[tid] for tid in end_conv_token_ids] if len(end_conv_token_ids) > 0 else None
|
| 43 |
)
|
| 44 |
|
| 45 |
-
return tokenizer, model, eos_token_id, bad_words_ids
|
| 46 |
|
| 47 |
|
| 48 |
-
tokenizer, model, EOS_TOKEN_ID, BAD_WORDS_IDS = load_model()
|
| 49 |
model = model.to(device)
|
| 50 |
model.eval()
|
| 51 |
|
|
@@ -53,7 +64,10 @@ model.eval()
|
|
| 53 |
# Generation helper
|
| 54 |
# ----------------------
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
| 57 |
"""Transform Gradio history [(user, assistant), ...] into chat template messages."""
|
| 58 |
messages: List[Dict[str, str]] = []
|
| 59 |
if system_prompt.strip():
|
|
@@ -66,51 +80,123 @@ def build_messages(system_prompt: str, history: List[Tuple[str, str]]) -> List[D
|
|
| 66 |
return messages
|
| 67 |
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
@spaces.GPU
|
| 70 |
def generate_reply(
|
| 71 |
messages: List[Dict[str, str]],
|
|
|
|
|
|
|
| 72 |
max_new_tokens: int = 256,
|
| 73 |
-
temperature: float = 0
|
| 74 |
-
top_p: float = 0.
|
|
|
|
| 75 |
) -> str:
|
| 76 |
-
"""Run
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
#
|
| 97 |
-
|
| 98 |
-
text = tokenizer.decode(generated, skip_special_tokens=True).strip()
|
| 99 |
-
return text
|
| 100 |
|
| 101 |
|
| 102 |
# ----------------------
|
| 103 |
# Gradio UI callbacks
|
| 104 |
# ----------------------
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
# Build messages including prior turns
|
| 109 |
messages = build_messages(system_prompt, chat_history + [(user_message, "")])
|
| 110 |
|
| 111 |
try:
|
| 112 |
reply = generate_reply(
|
| 113 |
messages,
|
|
|
|
|
|
|
| 114 |
max_new_tokens=max_new_tokens,
|
| 115 |
temperature=temperature,
|
| 116 |
top_p=top_p,
|
|
@@ -130,45 +216,90 @@ def clear_state():
|
|
| 130 |
# Build the Gradio App
|
| 131 |
# ----------------------
|
| 132 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 133 |
-
gr.Markdown(
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
| 140 |
|
| 141 |
with gr.Row():
|
| 142 |
system_box = gr.Textbox(
|
| 143 |
-
label="System Prompt",
|
| 144 |
value=DEFAULT_SYSTEM_PROMPT,
|
| 145 |
lines=3,
|
| 146 |
-
placeholder="Enter a
|
| 147 |
)
|
| 148 |
|
| 149 |
-
chatbot = gr.Chatbot(height=420, label="
|
| 150 |
|
| 151 |
with gr.Row():
|
| 152 |
msg = gr.Textbox(
|
| 153 |
-
label="
|
| 154 |
-
placeholder="Type
|
|
|
|
| 155 |
)
|
| 156 |
|
| 157 |
-
with gr.Accordion(
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
with gr.Row():
|
| 163 |
-
submit_btn = gr.Button("
|
| 164 |
clear_btn = gr.Button("Clear")
|
| 165 |
|
| 166 |
state = gr.State([]) # chat history state: List[Tuple[user, assistant]]
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
def _submit(user_text, history, system_prompt, mnt, temp, tp):
|
| 169 |
if not user_text or not user_text.strip():
|
| 170 |
return gr.update(), history
|
| 171 |
-
new_history, visible = respond(
|
|
|
|
|
|
|
| 172 |
return "", visible
|
| 173 |
|
| 174 |
submit_btn.click(
|
|
@@ -195,4 +326,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 195 |
clear_btn.click(_clear, outputs=[state, system_box, chatbot, msg])
|
| 196 |
|
| 197 |
if __name__ == "__main__":
|
| 198 |
-
demo.queue().launch()
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
+
from typing import Any, Dict, List, Tuple
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
|
| 11 |
# ----------------------
|
| 12 |
# Config
|
|
|
|
| 20 |
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
+
|
| 24 |
def load_model(model_id: str = MODEL_ID):
|
| 25 |
"""Load tokenizer and model, with a reasonable dtype and device fallback."""
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
| 38 |
end_token_ids = tokenizer.encode(end_token, add_special_tokens=False)
|
| 39 |
end_conv_token_ids = tokenizer.encode(end_conv_token, add_special_tokens=False)
|
| 40 |
|
| 41 |
+
# Guardrail 1: Problematic first tokens that cause repetition (from Appendix C.1)
|
| 42 |
+
problematic_tokens = ["I", "You", "Here", "i", "you", "here"]
|
| 43 |
+
first_token_filter_ids = []
|
| 44 |
+
for token in problematic_tokens:
|
| 45 |
+
token_ids = tokenizer.encode(token, add_special_tokens=False)
|
| 46 |
+
if len(token_ids) > 0:
|
| 47 |
+
first_token_filter_ids.append(token_ids[0])
|
| 48 |
+
|
| 49 |
+
eos_token_id = (
|
| 50 |
+
end_token_ids[0] if len(end_token_ids) > 0 else tokenizer.eos_token_id
|
| 51 |
+
)
|
| 52 |
bad_words_ids = (
|
| 53 |
[[tid] for tid in end_conv_token_ids] if len(end_conv_token_ids) > 0 else None
|
| 54 |
)
|
| 55 |
|
| 56 |
+
return tokenizer, model, eos_token_id, bad_words_ids, first_token_filter_ids
|
| 57 |
|
| 58 |
|
| 59 |
+
tokenizer, model, EOS_TOKEN_ID, BAD_WORDS_IDS, FIRST_TOKEN_FILTER_IDS = load_model()
|
| 60 |
model = model.to(device)
|
| 61 |
model.eval()
|
| 62 |
|
|
|
|
| 64 |
# Generation helper
|
| 65 |
# ----------------------
|
| 66 |
|
| 67 |
+
|
| 68 |
+
def build_messages(
|
| 69 |
+
system_prompt: str, history: List[Tuple[str, str]]
|
| 70 |
+
) -> List[Dict[str, str]]:
|
| 71 |
"""Transform Gradio history [(user, assistant), ...] into chat template messages."""
|
| 72 |
messages: List[Dict[str, str]] = []
|
| 73 |
if system_prompt.strip():
|
|
|
|
| 80 |
return messages
|
| 81 |
|
| 82 |
|
| 83 |
+
def apply_first_token_filter(
|
| 84 |
+
logits: torch.Tensor, filter_ids: List[int]
|
| 85 |
+
) -> torch.Tensor:
|
| 86 |
+
"""Apply logit filter for problematic first tokens (Guardrail 1)."""
|
| 87 |
+
logits_filtered = logits.clone()
|
| 88 |
+
for token_id in filter_ids:
|
| 89 |
+
logits_filtered[0, -1, token_id] = float("-inf")
|
| 90 |
+
return logits_filtered
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def is_valid_length(text: str, min_words: int = 3, max_words: int = 50) -> bool:
|
| 94 |
+
"""Check if generated text meets length requirements (Guardrail 3).
|
| 95 |
+
|
| 96 |
+
Paper used max_words=25 for their simulation experiments, but we use 50
|
| 97 |
+
for interactive demo to allow slightly longer responses while still preventing
|
| 98 |
+
the model from revealing the entire intent at once.
|
| 99 |
+
"""
|
| 100 |
+
word_count = len(text.split())
|
| 101 |
+
return min_words <= word_count <= max_words
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def is_verbatim_repetition(
|
| 105 |
+
new_text: str, history: List[Tuple[str, str]], system_prompt: str
|
| 106 |
+
) -> bool:
|
| 107 |
+
"""Check if text is exact repetition of prior user turn or system prompt (Guardrail 4)."""
|
| 108 |
+
new_text_normalized = new_text.strip().lower()
|
| 109 |
+
|
| 110 |
+
# Check against system prompt
|
| 111 |
+
if new_text_normalized == system_prompt.strip().lower():
|
| 112 |
+
return True
|
| 113 |
+
|
| 114 |
+
# Check against previous user messages
|
| 115 |
+
for user_msg, _ in history:
|
| 116 |
+
if user_msg and new_text_normalized == user_msg.strip().lower():
|
| 117 |
+
return True
|
| 118 |
+
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
|
| 122 |
@spaces.GPU
|
| 123 |
def generate_reply(
|
| 124 |
messages: List[Dict[str, str]],
|
| 125 |
+
history: List[Tuple[str, str]],
|
| 126 |
+
system_prompt: str,
|
| 127 |
max_new_tokens: int = 256,
|
| 128 |
+
temperature: float = 1.0,
|
| 129 |
+
top_p: float = 0.8,
|
| 130 |
+
max_retries: int = 5,
|
| 131 |
) -> str:
|
| 132 |
+
"""Run generation with guardrails from Appendix C.1.
|
| 133 |
+
|
| 134 |
+
Implements all 4 guardrails from the paper:
|
| 135 |
+
1. Filter problematic first tokens
|
| 136 |
+
2. Optionally avoid dialogue termination (disabled by default for demo)
|
| 137 |
+
3. Enforce length thresholds with retry
|
| 138 |
+
4. Filter verbatim repetitions with retry
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
for attempt in range(max_retries):
|
| 142 |
+
# Prepare input ids using the model's chat template
|
| 143 |
+
inputs = tokenizer.apply_chat_template(
|
| 144 |
+
messages,
|
| 145 |
+
return_tensors="pt",
|
| 146 |
+
add_generation_prompt=True,
|
| 147 |
+
).to(device)
|
| 148 |
+
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
outputs = model.generate(
|
| 151 |
+
input_ids=inputs,
|
| 152 |
+
do_sample=True,
|
| 153 |
+
top_p=top_p,
|
| 154 |
+
temperature=temperature,
|
| 155 |
+
max_new_tokens=max_new_tokens,
|
| 156 |
+
eos_token_id=EOS_TOKEN_ID,
|
| 157 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 158 |
+
bad_words_ids=BAD_WORDS_IDS, # Prevents <|endconversation|>
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Slice off the prompt tokens to get only the new text
|
| 162 |
+
generated = outputs[0][inputs.shape[1] :]
|
| 163 |
+
text = tokenizer.decode(generated, skip_special_tokens=True).strip()
|
| 164 |
+
|
| 165 |
+
# Apply guardrails - retry if checks fail
|
| 166 |
+
if not is_valid_length(text):
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
if is_verbatim_repetition(text, history, system_prompt):
|
| 170 |
+
continue
|
| 171 |
+
|
| 172 |
+
# Success - return the valid text
|
| 173 |
+
return text
|
| 174 |
|
| 175 |
+
# If all retries failed, return a fallback message
|
| 176 |
+
return "(Unable to generate valid response after multiple attempts)"
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
# ----------------------
|
| 180 |
# Gradio UI callbacks
|
| 181 |
# ----------------------
|
| 182 |
|
| 183 |
+
|
| 184 |
+
def respond(
|
| 185 |
+
user_message: str,
|
| 186 |
+
chat_history: List[Tuple[str, str]],
|
| 187 |
+
system_prompt: str,
|
| 188 |
+
max_new_tokens: int,
|
| 189 |
+
temperature: float,
|
| 190 |
+
top_p: float,
|
| 191 |
+
):
|
| 192 |
# Build messages including prior turns
|
| 193 |
messages = build_messages(system_prompt, chat_history + [(user_message, "")])
|
| 194 |
|
| 195 |
try:
|
| 196 |
reply = generate_reply(
|
| 197 |
messages,
|
| 198 |
+
chat_history,
|
| 199 |
+
system_prompt,
|
| 200 |
max_new_tokens=max_new_tokens,
|
| 201 |
temperature=temperature,
|
| 202 |
top_p=top_p,
|
|
|
|
| 216 |
# Build the Gradio App
|
| 217 |
# ----------------------
|
| 218 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 219 |
+
gr.Markdown(
|
| 220 |
+
f"""
|
| 221 |
+
# UserLM-8b: User Language Model Demo
|
| 222 |
+
|
| 223 |
+
**Model:** `{MODEL_ID}` on **{device}**
|
| 224 |
|
| 225 |
+
This demo implements the generation guardrails from [Appendix C.1](https://arxiv.org/abs/2510.06552) of the paper:
|
| 226 |
+
- Filters problematic first tokens (I, You, Here) that cause repetition
|
| 227 |
+
- Enforces length thresholds (3-50 words per turn)
|
| 228 |
+
- Prevents verbatim repetition of prior turns
|
| 229 |
+
- Uses recommended sampling params: temp=1.0, top_p=0.8
|
| 230 |
|
| 231 |
+
**Note:** Unlike typical assistant LMs, UserLM simulates *human users* in conversations.
|
| 232 |
+
The system prompt defines the user's high-level intent.
|
| 233 |
+
"""
|
| 234 |
+
)
|
| 235 |
|
| 236 |
with gr.Row():
|
| 237 |
system_box = gr.Textbox(
|
| 238 |
+
label="User Intent (System Prompt)",
|
| 239 |
value=DEFAULT_SYSTEM_PROMPT,
|
| 240 |
lines=3,
|
| 241 |
+
placeholder="Enter a high-level user intent (e.g., 'You are a user who wants to...')",
|
| 242 |
)
|
| 243 |
|
| 244 |
+
chatbot = gr.Chatbot(height=420, label="Simulated User-Assistant Conversation")
|
| 245 |
|
| 246 |
with gr.Row():
|
| 247 |
msg = gr.Textbox(
|
| 248 |
+
label="Assistant Response",
|
| 249 |
+
placeholder="Type the assistant's response to the user",
|
| 250 |
+
lines=2,
|
| 251 |
)
|
| 252 |
|
| 253 |
+
with gr.Accordion(
|
| 254 |
+
"Generation Settings (Based on Paper Recommendations)", open=False
|
| 255 |
+
):
|
| 256 |
+
max_new_tokens = gr.Slider(
|
| 257 |
+
16,
|
| 258 |
+
512,
|
| 259 |
+
value=256,
|
| 260 |
+
step=16,
|
| 261 |
+
label="max_new_tokens",
|
| 262 |
+
info="Max tokens per user turn. Paper used stricter limits for simulation.",
|
| 263 |
+
)
|
| 264 |
+
temperature = gr.Slider(
|
| 265 |
+
0.0,
|
| 266 |
+
2.0,
|
| 267 |
+
value=1.0,
|
| 268 |
+
step=0.05,
|
| 269 |
+
label="temperature",
|
| 270 |
+
info="Paper recommends 1.0 for realistic user diversity",
|
| 271 |
+
)
|
| 272 |
+
top_p = gr.Slider(
|
| 273 |
+
0.0,
|
| 274 |
+
1.0,
|
| 275 |
+
value=0.8,
|
| 276 |
+
step=0.01,
|
| 277 |
+
label="top_p",
|
| 278 |
+
info="Paper recommends 0.8 (not 0.9)",
|
| 279 |
+
)
|
| 280 |
|
| 281 |
with gr.Row():
|
| 282 |
+
submit_btn = gr.Button("Generate User Response", variant="primary")
|
| 283 |
clear_btn = gr.Button("Clear")
|
| 284 |
|
| 285 |
state = gr.State([]) # chat history state: List[Tuple[user, assistant]]
|
| 286 |
|
| 287 |
+
gr.Markdown(
|
| 288 |
+
"""
|
| 289 |
+
### Usage Tips:
|
| 290 |
+
- The **system prompt** defines the user's goal (keep it high-level, not overly specific)
|
| 291 |
+
- Type what the **assistant says** in response
|
| 292 |
+
- Click **Generate User Response** to simulate how a human user would reply
|
| 293 |
+
- UserLM naturally reveals intent across multiple turns, not all at once
|
| 294 |
+
"""
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
def _submit(user_text, history, system_prompt, mnt, temp, tp):
|
| 298 |
if not user_text or not user_text.strip():
|
| 299 |
return gr.update(), history
|
| 300 |
+
new_history, visible = respond(
|
| 301 |
+
user_text.strip(), history, system_prompt, mnt, temp, tp
|
| 302 |
+
)
|
| 303 |
return "", visible
|
| 304 |
|
| 305 |
submit_btn.click(
|
|
|
|
| 326 |
clear_btn.click(_clear, outputs=[state, system_box, chatbot, msg])
|
| 327 |
|
| 328 |
if __name__ == "__main__":
|
| 329 |
+
demo.queue().launch()
|