Spaces:
Runtime error
Runtime error
| # EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
| # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
| # International Conference on Computer Vision (ICCV), 2023 | |
| import math | |
| import torch | |
| from efficientvit.models.utils.list import val2list | |
| __all__ = ["CosineLRwithWarmup"] | |
| class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler): | |
| def __init__( | |
| self, | |
| optimizer: torch.optim.Optimizer, | |
| warmup_steps: int, | |
| warmup_lr: float, | |
| decay_steps: int or list[int], | |
| last_epoch: int = -1, | |
| ) -> None: | |
| self.warmup_steps = warmup_steps | |
| self.warmup_lr = warmup_lr | |
| self.decay_steps = val2list(decay_steps) | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self) -> list[float]: | |
| if self.last_epoch < self.warmup_steps: | |
| return [ | |
| (base_lr - self.warmup_lr) * (self.last_epoch + 1) / self.warmup_steps + self.warmup_lr | |
| for base_lr in self.base_lrs | |
| ] | |
| else: | |
| current_steps = self.last_epoch - self.warmup_steps | |
| decay_steps = [0] + self.decay_steps | |
| idx = len(decay_steps) - 2 | |
| for i, decay_step in enumerate(decay_steps[:-1]): | |
| if decay_step <= current_steps < decay_steps[i + 1]: | |
| idx = i | |
| break | |
| current_steps -= decay_steps[idx] | |
| decay_step = decay_steps[idx + 1] - decay_steps[idx] | |
| return [0.5 * base_lr * (1 + math.cos(math.pi * current_steps / decay_step)) for base_lr in self.base_lrs] | |