Spaces:
Runtime error
Runtime error
| # EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
| # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
| # International Conference on Computer Vision (ICCV), 2023 | |
| import os | |
| import torch | |
| import torch.distributed | |
| from efficientvit.models.utils.list import list_mean, list_sum | |
| __all__ = [ | |
| "dist_init", | |
| "get_dist_rank", | |
| "get_dist_size", | |
| "is_master", | |
| "dist_barrier", | |
| "get_dist_local_rank", | |
| "sync_tensor", | |
| ] | |
| def dist_init() -> None: | |
| try: | |
| torch.distributed.init_process_group(backend="nccl") | |
| assert torch.distributed.is_initialized() | |
| except Exception: | |
| # use torchpack | |
| from torchpack import distributed as dist | |
| dist.init() | |
| os.environ["RANK"] = f"{dist.rank()}" | |
| os.environ["WORLD_SIZE"] = f"{dist.size()}" | |
| os.environ["LOCAL_RANK"] = f"{dist.local_rank()}" | |
| def get_dist_rank() -> int: | |
| return int(os.environ["RANK"]) | |
| def get_dist_size() -> int: | |
| return int(os.environ["WORLD_SIZE"]) | |
| def is_master() -> bool: | |
| return get_dist_rank() == 0 | |
| def dist_barrier() -> None: | |
| torch.distributed.barrier() | |
| def get_dist_local_rank() -> int: | |
| return int(os.environ["LOCAL_RANK"]) | |
| def sync_tensor(tensor: torch.Tensor or float, reduce="mean") -> torch.Tensor or list[torch.Tensor]: | |
| if not isinstance(tensor, torch.Tensor): | |
| tensor = torch.Tensor(1).fill_(tensor).cuda() | |
| tensor_list = [torch.empty_like(tensor) for _ in range(get_dist_size())] | |
| torch.distributed.all_gather(tensor_list, tensor.contiguous(), async_op=False) | |
| if reduce == "mean": | |
| return list_mean(tensor_list) | |
| elif reduce == "sum": | |
| return list_sum(tensor_list) | |
| elif reduce == "cat": | |
| return torch.cat(tensor_list, dim=0) | |
| elif reduce == "root": | |
| return tensor_list[0] | |
| else: | |
| return tensor_list | |