File size: 6,045 Bytes
b8086d5
 
 
 
 
 
 
 
 
ac24887
 
b8086d5
cd38f99
b8086d5
 
 
 
cd38f99
 
b8086d5
 
 
 
 
 
 
 
ac24887
 
b8086d5
 
 
 
 
 
 
f27fbb4
cd38f99
 
 
 
f27fbb4
b8086d5
 
cd38f99
 
b8086d5
 
 
 
 
 
ac24887
b8086d5
 
 
 
 
 
ac24887
b8086d5
 
 
 
 
 
 
 
 
ac24887
 
 
b8086d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac24887
 
 
 
 
 
 
 
cd38f99
 
b8086d5
 
 
f27fbb4
b8086d5
f27fbb4
 
ac24887
 
 
 
 
f27fbb4
 
ac24887
f27fbb4
ac24887
 
f27fbb4
 
 
 
 
 
b8086d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e2069
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta

class DataProcessor:
    def __init__(self):
        self.fundamentals_cache = {}
    
    def get_market_data(self, ticker="GC=F", interval="1d"):
        """Fetch market data from Yahoo Finance for a given ticker"""
        try:
            # FIX: Gunakan string interval yang didukung langsung oleh Yahoo/yfinance
            interval_map = {
                "5m": "5m",
                "15m": "15m",
                "30m": "30m",
                "1h": "1h",
                "4h": "4h",
                "1d": "1d",
                "1wk": "1wk",
                "1mo": "1mo",
                "3mo": "3mo"
            }
            
            yf_interval = interval_map.get(interval, "1d")
            
            if interval in ["5m", "15m", "30m", "1h", "4h"]:
                period = "60d"
            elif interval in ["1d"]:
                period = "1y"
            elif interval in ["1wk"]:
                period = "2y"
            else:
                period = "max"
            
            ticker_obj = yf.Ticker(ticker)
            # Mengatasi masalah data kripto yang mungkin tidak tersedia dalam periode lama
            if ticker == "BTC-USD" and period == "max":
                period = "5y" 
                
            df = ticker_obj.history(interval=yf_interval, period=period)
            
            if df.empty:
                # Perbarui pesan error untuk memperjelas log
                raise ValueError(f"No data retrieved from Yahoo Finance for {ticker} at interval {interval}. Check if ticker/interval is supported.")
            
            df.columns = [col.capitalize() for col in df.columns]
            
            return df
            
        except Exception as e:
            print(f"Error fetching data for {ticker}: {e}")
            return pd.DataFrame()
    
    def calculate_indicators(self, df):
        if df.empty:
            return df
        
        df['SMA_5'] = df['Close'].rolling(window=5).mean()
        df['SMA_20'] = df['Close'].rolling(window=20).mean()
        
        df['EMA_12'] = df['Close'].ewm(span=12, adjust=False).mean()
        df['EMA_26'] = df['Close'].ewm(span=26, adjust=False).mean()
        
        df['MACD'] = df['EMA_12'] - df['EMA_26']
        df['MACD_signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
        df['MACD_histogram'] = df['MACD'] - df['MACD_signal']
        
        df['MACD_bar_positive'] = df['MACD_histogram'].where(df['MACD_histogram'] > 0, 0)
        df['MACD_bar_negative'] = df['MACD_histogram'].where(df['MACD_histogram'] < 0, 0)
        
        delta = df['Close'].diff()
        gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
        loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
        rs = gain / loss
        df['RSI'] = 100 - (100 / (1 + rs))
        
        df['BB_middle'] = df['Close'].rolling(window=20).mean()
        bb_std = df['Close'].rolling(window=20).std()
        df['BB_upper'] = df['BB_middle'] + (bb_std * 2)
        df['BB_lower'] = df['BB_middle'] - (bb_std * 2)
        
        high_low = df['High'] - df['Low']
        high_close = np.abs(df['High'] - df['Close'].shift())
        low_close = np.abs(df['Low'] - df['Close'].shift())
        ranges = pd.concat([high_low, high_close, low_close], axis=1)
        true_range = ranges.max(axis=1)
        df['ATR'] = true_range.rolling(window=14).mean()
        
        df['Volume_SMA'] = df['Volume'].rolling(window=20).mean()
        df['Volume_ratio'] = df['Volume'] / df['Volume_SMA']
        
        low_14 = df['Low'].rolling(window=14).min()
        high_14 = df['High'].rolling(window=14).max()
        df['%K'] = 100 * (df['Close'] - low_14) / (high_14 - low_14)
        df['%D'] = df['%K'].rolling(window=3).mean()
        df['%SD'] = df['%D'].rolling(window=3).mean()
        df['UL'] = 70
        df['DL'] = 30
        
        return df
    
    def get_fundamental_data(self, ticker="GC=F"):
        try:
            if ticker == "BTC-USD":
                fundamentals = {
                    "Crypto Volatility Index": round(np.random.uniform(50, 150), 1),
                    "Dominance Index": f"{np.random.uniform(40, 60):.2f}%",
                    "Fear & Greed Index": np.random.choice(["Extreme Fear", "Fear", "Neutral", "Greed", "Extreme Greed"]),
                    "Hash Rate Trend": np.random.choice(["Increasing", "Stable", "Decreasing"]),
                    "Institutional Flow (Net)": f"{np.random.uniform(-100, 100):,.0f}M USD",
                    "Market Sentiment": np.random.choice(["Bullish", "Neutral", "Bearish"]),
                }
            else:
                fundamentals = {
                    "Gold Strength Index": round(np.random.uniform(30, 80), 1),
                    "Dollar Index (DXY)": round(np.random.uniform(90, 110), 1),
                    "Real Interest Rate": f"{np.random.uniform(-2, 5):.2f}%",
                    "Gold Volatility": f"{np.random.uniform(10, 40):.1f}%",
                    "Commercial Hedgers (Net)": f"{np.random.uniform(-50000, 50000):,.0f}",
                    "Managed Money (Net)": f"{np.random.uniform(-100000, 100000):,.0f}",
                    "Market Sentiment": np.random.choice(["Bullish", "Neutral", "Bearish"]),
                }
            
            return fundamentals
            
        except Exception as e:
            print(f"Error fetching fundamentals: {e}")
            return {"Error": str(e)}
    
    def prepare_for_chronos(self, df, lookback=100):
        if df.empty or len(df) < lookback:
            return None
        
        prices = df['Close'].iloc[-lookback:].values
        prices = prices.astype(np.float32)
        
        mean = np.mean(prices)
        std = np.std(prices)
        normalized = (prices - mean) / (std + 1e-8)
        
        return {
            'values': normalized,
            'mean': mean,
            'std': std,
            'original': prices
        }