""" vectorizationAgentGraph.py - Vectorization Agent Graph for text-to-vector conversion """ from langgraph.graph import StateGraph, END from src.states.vectorizationAgentState import VectorizationAgentState from src.nodes.vectorizationAgentNode import VectorizationAgentNode from src.llms.groqllm import GroqLLM class VectorizationGraphBuilder: def __init__(self, llm=None): self.llm = llm or GroqLLM().get_llm() def build_graph(self): node = VectorizationAgentNode(self.llm) graph = StateGraph(VectorizationAgentState) graph.add_node("detect_languages", node.detect_languages) graph.add_node("vectorize_texts", node.vectorize_texts) graph.add_node("anomaly_detection", node.run_anomaly_detection) graph.add_node("trending_detection", node.run_trending_detection) graph.add_node("generate_expert_summary", node.generate_expert_summary) graph.add_node("format_output", node.format_final_output) graph.set_entry_point("detect_languages") graph.add_edge("detect_languages", "vectorize_texts") graph.add_edge("vectorize_texts", "anomaly_detection") graph.add_edge("anomaly_detection", "trending_detection") graph.add_edge("trending_detection", "generate_expert_summary") graph.add_edge("generate_expert_summary", "format_output") graph.add_edge("format_output", END) return graph.compile() llm = GroqLLM().get_llm() graph = VectorizationGraphBuilder(llm).build_graph()