File size: 19,568 Bytes
aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 752f5cc aa3c874 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
"""
Agent Evaluator - Industry-Level Testing Harness
Implements LLM-as-Judge pattern for evaluating Roger Intelligence Platform agents.
Integrates with LangSmith for trace logging and provides comprehensive quality metrics.
Key Features:
- Tool selection accuracy evaluation
- Response quality scoring (relevance, coherence, accuracy)
- BLEU score for text similarity measurement
- Hallucination detection
- Graceful degradation testing
- LangSmith trace integration
"""
import os
import sys
import json
import time
import re
from collections import Counter
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime
from dataclasses import dataclass, field
# Add project root to path
PROJECT_ROOT = Path(__file__).parent.parent.parent
sys.path.insert(0, str(PROJECT_ROOT))
@dataclass
class EvaluationResult:
"""Result of a single evaluation test."""
test_id: str
category: str
query: str
passed: bool
score: float # 0.0 - 1.0
tool_selection_correct: bool
response_quality: float
hallucination_detected: bool
latency_ms: float
details: Dict[str, Any] = field(default_factory=dict)
error: Optional[str] = None
@dataclass
class EvaluationReport:
"""Aggregated evaluation report."""
timestamp: str
total_tests: int
passed_tests: int
failed_tests: int
average_score: float
tool_selection_accuracy: float
response_quality_avg: float
hallucination_rate: float
average_latency_ms: float
results: List[EvaluationResult] = field(default_factory=list)
def to_dict(self) -> Dict[str, Any]:
return {
"timestamp": self.timestamp,
"summary": {
"total_tests": self.total_tests,
"passed_tests": self.passed_tests,
"failed_tests": self.failed_tests,
"pass_rate": self.passed_tests / max(self.total_tests, 1),
"average_score": self.average_score,
"tool_selection_accuracy": self.tool_selection_accuracy,
"response_quality_avg": self.response_quality_avg,
"hallucination_rate": self.hallucination_rate,
"average_latency_ms": self.average_latency_ms,
},
"results": [
{
"test_id": r.test_id,
"category": r.category,
"passed": r.passed,
"score": r.score,
"tool_selection_correct": r.tool_selection_correct,
"response_quality": r.response_quality,
"hallucination_detected": r.hallucination_detected,
"latency_ms": r.latency_ms,
"error": r.error,
}
for r in self.results
],
}
class AgentEvaluator:
"""
Comprehensive agent evaluation harness.
Implements the LLM-as-Judge pattern for evaluating:
1. Tool Selection: Did the agent use the right tools?
2. Response Quality: Is the response relevant and coherent?
3. Hallucination Detection: Did the agent fabricate information?
4. Graceful Degradation: Does it handle failures properly?
"""
def __init__(self, llm=None, use_langsmith: bool = True):
self.llm = llm
self.use_langsmith = use_langsmith
self.langsmith_client = None
if use_langsmith:
self._setup_langsmith()
def _setup_langsmith(self):
"""Initialize LangSmith client for evaluation logging."""
try:
from src.config.langsmith_config import (
get_langsmith_client,
LangSmithConfig,
)
config = LangSmithConfig()
config.configure()
self.langsmith_client = get_langsmith_client()
if self.langsmith_client:
print("[Evaluator] ✓ LangSmith connected for evaluation tracing")
except ImportError:
print("[Evaluator] ⚠️ LangSmith not available, running without tracing")
def load_golden_dataset(self, path: Optional[Path] = None) -> List[Dict]:
"""Load golden dataset for evaluation."""
if path is None:
path = (
PROJECT_ROOT
/ "tests"
/ "evaluation"
/ "golden_datasets"
/ "expected_responses.json"
)
if path.exists():
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
else:
print(f"[Evaluator] ⚠️ Golden dataset not found at {path}")
return []
def evaluate_tool_selection(
self, expected_tools: List[str], actual_tools: List[str]
) -> Tuple[bool, float]:
"""
Evaluate if the agent selected the correct tools.
Returns:
Tuple of (passed, score)
"""
if not expected_tools:
return True, 1.0
expected_set = set(expected_tools)
actual_set = set(actual_tools)
# Calculate intersection
correct = len(expected_set & actual_set)
total_expected = len(expected_set)
score = correct / total_expected if total_expected > 0 else 0.0
passed = score >= 0.5 # At least half the expected tools used
return passed, score
def evaluate_response_quality(
self,
query: str,
response: str,
expected_contains: List[str],
quality_threshold: float = 0.7,
) -> Tuple[bool, float]:
"""
Evaluate response quality using keyword matching and structure.
For production, this should use LLM-as-Judge with a quality rubric.
This implementation provides a baseline heuristic.
"""
if not response:
return False, 0.0
response_lower = response.lower()
# Keyword matching score
keyword_score = 0.0
if expected_contains:
matched = sum(1 for kw in expected_contains if kw.lower() in response_lower)
keyword_score = matched / len(expected_contains)
# Length and structure score
word_count = len(response.split())
length_score = min(1.0, word_count / 50) # Expect at least 50 words
# Combined score
score = (keyword_score * 0.6) + (length_score * 0.4)
passed = score >= quality_threshold
return passed, score
def calculate_bleu_score(
self, reference: str, candidate: str, n_gram: int = 4
) -> float:
"""
Calculate BLEU (Bilingual Evaluation Understudy) score for text similarity.
BLEU measures the similarity between a candidate text and reference text
based on n-gram precision. Higher scores indicate better similarity.
Args:
reference: Reference/expected text
candidate: Generated/candidate text
n_gram: Maximum n-gram to consider (default 4 for BLEU-4)
Returns:
BLEU score between 0.0 and 1.0
"""
def tokenize(text: str) -> List[str]:
"""Simple tokenization - lowercase and split on non-alphanumeric."""
return re.findall(r"\b\w+\b", text.lower())
def get_ngrams(tokens: List[str], n: int) -> List[Tuple[str, ...]]:
"""Generate n-grams from token list."""
return [tuple(tokens[i : i + n]) for i in range(len(tokens) - n + 1)]
def modified_precision(
ref_tokens: List[str], cand_tokens: List[str], n: int
) -> float:
"""Calculate modified n-gram precision with clipping."""
if len(cand_tokens) < n:
return 0.0
cand_ngrams = get_ngrams(cand_tokens, n)
ref_ngrams = get_ngrams(ref_tokens, n)
if not cand_ngrams:
return 0.0
# Count n-grams
cand_counts = Counter(cand_ngrams)
ref_counts = Counter(ref_ngrams)
# Clip counts by reference counts
clipped_count = 0
for ngram, count in cand_counts.items():
clipped_count += min(count, ref_counts.get(ngram, 0))
return clipped_count / len(cand_ngrams)
def brevity_penalty(ref_len: int, cand_len: int) -> float:
"""Calculate brevity penalty for short candidates."""
if cand_len == 0:
return 0.0
if cand_len >= ref_len:
return 1.0
return math.exp(1 - ref_len / cand_len)
import math
# Tokenize
ref_tokens = tokenize(reference)
cand_tokens = tokenize(candidate)
if not ref_tokens or not cand_tokens:
return 0.0
# Calculate n-gram precisions
precisions = []
for n in range(1, n_gram + 1):
p = modified_precision(ref_tokens, cand_tokens, n)
precisions.append(p)
# Avoid log(0)
if any(p == 0 for p in precisions):
return 0.0
# Geometric mean of precisions (BLEU formula)
log_precision_sum = sum(math.log(p) for p in precisions) / len(precisions)
# Apply brevity penalty
bp = brevity_penalty(len(ref_tokens), len(cand_tokens))
bleu = bp * math.exp(log_precision_sum)
return round(bleu, 4)
def evaluate_bleu(
self, expected_response: str, actual_response: str, threshold: float = 0.3
) -> Tuple[bool, float]:
"""
Evaluate response using BLEU score.
Args:
expected_response: Reference/expected response text
actual_response: Generated response text
threshold: Minimum BLEU score to pass (default 0.3)
Returns:
Tuple of (passed, bleu_score)
"""
bleu = self.calculate_bleu_score(expected_response, actual_response)
passed = bleu >= threshold
return passed, bleu
def evaluate_response_quality_llm(
self, query: str, response: str, context: str = ""
) -> Tuple[bool, float, str]:
"""
LLM-as-Judge evaluation for response quality.
Uses the configured LLM to judge response quality on a rubric.
Requires self.llm to be set.
Returns:
Tuple of (passed, score, reasoning)
"""
if not self.llm:
# Fallback to heuristic
passed, score = self.evaluate_response_quality(query, response, [])
return passed, score, "LLM not available, used heuristic"
judge_prompt = f"""You are an expert evaluator for an AI intelligence system.
Rate the following response on a scale of 0-10 based on:
1. Relevance to the query
2. Accuracy of information
3. Clarity and coherence
4. Completeness
Query: {query}
Response: {response}
{f"Context: {context}" if context else ""}
Provide your evaluation as JSON:
{{"score": <0-10>, "reasoning": "<brief explanation>", "issues": ["<issue1>", ...]}}
"""
try:
result = self.llm.invoke(judge_prompt)
parsed = json.loads(result.content)
score = parsed.get("score", 5) / 10.0
reasoning = parsed.get("reasoning", "")
return score >= 0.7, score, reasoning
except Exception as e:
return False, 0.5, f"Evaluation error: {e}"
def detect_hallucination(
self, response: str, source_data: Optional[Dict] = None
) -> Tuple[bool, float]:
"""
Detect potential hallucinations in the response.
Heuristic approach - checks for fabricated specifics.
For production, should compare against source data.
"""
hallucination_indicators = [
"I don't have access to",
"I cannot verify",
"As of my knowledge",
"I'm not able to confirm",
]
response_lower = response.lower()
# Check for uncertainty indicators (good sign - honest about limitations)
has_uncertainty = any(
ind.lower() in response_lower for ind in hallucination_indicators
)
# Check for overly specific claims without source
# This is a simplified heuristic
if source_data:
# Compare claimed facts against source data
pass
# For now, if the response admits uncertainty when appropriate, less likely hallucinating
hallucination_score = 0.2 if has_uncertainty else 0.5
detected = hallucination_score > 0.6
return detected, hallucination_score
def evaluate_single(
self,
test_case: Dict[str, Any],
agent_response: str,
tools_used: List[str],
latency_ms: float,
) -> EvaluationResult:
"""Run evaluation for a single test case."""
test_id = test_case.get("id", "unknown")
category = test_case.get("category", "unknown")
query = test_case.get("query", "")
expected_tools = test_case.get("expected_tools", [])
expected_contains = test_case.get("expected_response_contains", [])
quality_threshold = test_case.get("quality_threshold", 0.7)
# Evaluate components
tool_correct, tool_score = self.evaluate_tool_selection(
expected_tools, tools_used
)
quality_passed, quality_score = self.evaluate_response_quality(
query, agent_response, expected_contains, quality_threshold
)
hallucination_detected, halluc_score = self.detect_hallucination(agent_response)
# Calculate overall score
overall_score = (
tool_score * 0.3 + quality_score * 0.5 + (1 - halluc_score) * 0.2
)
passed = tool_correct and quality_passed and not hallucination_detected
return EvaluationResult(
test_id=test_id,
category=category,
query=query,
passed=passed,
score=overall_score,
tool_selection_correct=tool_correct,
response_quality=quality_score,
hallucination_detected=hallucination_detected,
latency_ms=latency_ms,
details={
"tool_score": tool_score,
"expected_tools": expected_tools,
"actual_tools": tools_used,
},
)
def run_evaluation(
self, golden_dataset: Optional[List[Dict]] = None, agent_executor=None
) -> EvaluationReport:
"""
Run full evaluation suite against golden dataset.
Args:
golden_dataset: List of test cases (loads default if None)
agent_executor: Optional callable to execute agent (for live testing)
Returns:
EvaluationReport with aggregated results
"""
if golden_dataset is None:
golden_dataset = self.load_golden_dataset()
if not golden_dataset:
print("[Evaluator] ⚠️ No test cases to evaluate")
return EvaluationReport(
timestamp=datetime.now().isoformat(),
total_tests=0,
passed_tests=0,
failed_tests=0,
average_score=0.0,
tool_selection_accuracy=0.0,
response_quality_avg=0.0,
hallucination_rate=0.0,
average_latency_ms=0.0,
)
results = []
for test_case in golden_dataset:
print(f"[Evaluator] Running test: {test_case.get('id', 'unknown')}")
start_time = time.time()
if agent_executor:
# Live evaluation with actual agent
try:
response, tools_used = agent_executor(test_case["query"])
except Exception as e:
result = EvaluationResult(
test_id=test_case.get("id", "unknown"),
category=test_case.get("category", "unknown"),
query=test_case.get("query", ""),
passed=False,
score=0.0,
tool_selection_correct=False,
response_quality=0.0,
hallucination_detected=False,
latency_ms=0.0,
error=str(e),
)
results.append(result)
continue
else:
# Mock evaluation (for testing the evaluator itself)
response = f"Mock response for: {test_case.get('query', '')}"
tools_used = test_case.get("expected_tools", [])[
:1
] # Simulate partial tool use
latency_ms = (time.time() - start_time) * 1000
result = self.evaluate_single(
test_case=test_case,
agent_response=response,
tools_used=tools_used,
latency_ms=latency_ms,
)
results.append(result)
# Aggregate results
total = len(results)
passed = sum(1 for r in results if r.passed)
report = EvaluationReport(
timestamp=datetime.now().isoformat(),
total_tests=total,
passed_tests=passed,
failed_tests=total - passed,
average_score=sum(r.score for r in results) / max(total, 1),
tool_selection_accuracy=sum(1 for r in results if r.tool_selection_correct)
/ max(total, 1),
response_quality_avg=sum(r.response_quality for r in results)
/ max(total, 1),
hallucination_rate=sum(1 for r in results if r.hallucination_detected)
/ max(total, 1),
average_latency_ms=sum(r.latency_ms for r in results) / max(total, 1),
results=results,
)
return report
def save_report(self, report: EvaluationReport, path: Optional[Path] = None):
"""Save evaluation report to JSON file."""
if path is None:
path = PROJECT_ROOT / "tests" / "evaluation" / "reports"
path.mkdir(parents=True, exist_ok=True)
path = path / f"eval_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(path, "w", encoding="utf-8") as f:
json.dump(report.to_dict(), f, indent=2)
print(f"[Evaluator] ✓ Report saved to {path}")
return path
def run_evaluation_cli():
"""CLI entry point for running evaluations."""
print("=" * 60)
print("Roger Intelligence Platform - Agent Evaluator")
print("=" * 60)
evaluator = AgentEvaluator(use_langsmith=True)
# Run evaluation with mock executor (for testing)
report = evaluator.run_evaluation()
# Print summary
print("\n" + "=" * 60)
print("EVALUATION SUMMARY")
print("=" * 60)
print(f"Total Tests: {report.total_tests}")
print(
f"Passed: {report.passed_tests} ({report.passed_tests/max(report.total_tests,1)*100:.1f}%)"
)
print(f"Failed: {report.failed_tests}")
print(f"Average Score: {report.average_score:.2f}")
print(f"Tool Selection Accuracy: {report.tool_selection_accuracy*100:.1f}%")
print(f"Response Quality Avg: {report.response_quality_avg*100:.1f}%")
print(f"Hallucination Rate: {report.hallucination_rate*100:.1f}%")
print(f"Average Latency: {report.average_latency_ms:.1f}ms")
# Save report
evaluator.save_report(report)
return report
if __name__ == "__main__":
run_evaluation_cli()
|