File size: 35,282 Bytes
b4856f1 752f5cc b4856f1 c565e08 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 eb6b502 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc eb6b502 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 eb6b502 b4856f1 eb6b502 752f5cc b4856f1 eb6b502 752f5cc b4856f1 752f5cc eb6b502 01d0ae1 eb6b502 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc eb6b502 752f5cc b4856f1 752f5cc b4856f1 752f5cc eb6b502 752f5cc b4856f1 752f5cc b4856f1 752f5cc eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 01d0ae1 eb6b502 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 16ec2cf 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc c565e08 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc c565e08 752f5cc b4856f1 752f5cc b4856f1 752f5cc c565e08 752f5cc b4856f1 752f5cc b4856f1 752f5cc c565e08 752f5cc b4856f1 752f5cc c565e08 752f5cc b4856f1 752f5cc c565e08 752f5cc b4856f1 c565e08 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
"""
src/nodes/vectorizationAgentNode.py
Vectorization Agent Node - Agentic AI for text-to-vector conversion
Uses language-specific BERT models for Sinhala, Tamil, and English
"""
import sys
import logging
from datetime import datetime, timezone
from typing import Dict, Any, List
from pathlib import Path
import numpy as np
# Add models path
MODELS_PATH = Path(__file__).parent.parent.parent / "models" / "anomaly-detection"
sys.path.insert(0, str(MODELS_PATH))
from src.states.vectorizationAgentState import VectorizationAgentState
from src.llms.groqllm import GroqLLM
logger = logging.getLogger("vectorization_agent_node")
# Import vectorization utilities from models/anomaly-detection/src/utils/
try:
# MODELS_PATH is already added to sys.path, so import from src.utils.vectorizer
from src.utils.vectorizer import detect_language, get_vectorizer
VECTORIZER_AVAILABLE = True
except ImportError as e:
try:
# Fallback: try direct import if running from different context
import importlib.util
vectorizer_path = MODELS_PATH / "src" / "utils" / "vectorizer.py"
if vectorizer_path.exists():
spec = importlib.util.spec_from_file_location("vectorizer", vectorizer_path)
vectorizer_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(vectorizer_module)
detect_language = vectorizer_module.detect_language
get_vectorizer = vectorizer_module.get_vectorizer
VECTORIZER_AVAILABLE = True
else:
VECTORIZER_AVAILABLE = False
# Define placeholder functions to prevent NameError
detect_language = None
get_vectorizer = None
logger.warning(
f"[VectorizationAgent] Vectorizer not found at {vectorizer_path}"
)
except Exception as e2:
VECTORIZER_AVAILABLE = False
detect_language = None
get_vectorizer = None
logger.warning(f"[VectorizationAgent] Vectorizer import failed: {e} / {e2}")
class VectorizationAgentNode:
"""
Agentic AI for converting text to vectors using language-specific BERT models.
Steps:
1. Language Detection (FastText/lingua-py + Unicode script)
2. Text Vectorization (SinhalaBERTo / Tamil-BERT / DistilBERT)
3. Expert Summary (GroqLLM for combining insights)
"""
MODEL_INFO = {
"english": {
"name": "DistilBERT",
"hf_name": "distilbert-base-uncased",
"description": "Fast and accurate English understanding",
},
"sinhala": {
"name": "SinhalaBERTo",
"hf_name": "keshan/SinhalaBERTo",
"description": "Specialized Sinhala context and sentiment",
},
"tamil": {
"name": "Tamil-BERT",
"hf_name": "l3cube-pune/tamil-bert",
"description": "Specialized Tamil understanding",
},
}
def __init__(self, llm=None):
"""Initialize vectorization agent node"""
self.llm = llm or GroqLLM().get_llm()
self.vectorizer = None
logger.info("[VectorizationAgent] Initialized")
logger.info(f" Available models: {list(self.MODEL_INFO.keys())}")
def _get_vectorizer(self):
"""Lazy load vectorizer"""
if self.vectorizer is None and VECTORIZER_AVAILABLE:
self.vectorizer = get_vectorizer()
return self.vectorizer
def detect_languages(self, state: VectorizationAgentState) -> Dict[str, Any]:
"""
Step 1: Detect language for each input text.
Uses FastText/lingua-py with Unicode script fallback.
"""
import json
logger.info("[VectorizationAgent] STEP 1: Language Detection")
raw_input = state.get("input_texts", [])
# DEBUG: Log raw input
logger.info(f"[VectorizationAgent] DEBUG: raw_input type = {type(raw_input)}")
logger.info(f"[VectorizationAgent] DEBUG: raw_input = {str(raw_input)[:500]}")
# Robust parsing: handle string, list, or other formats
input_texts = []
if isinstance(raw_input, str):
# Try to parse as JSON string
try:
parsed = json.loads(raw_input)
if isinstance(parsed, list):
input_texts = parsed
elif isinstance(parsed, dict) and "input_texts" in parsed:
input_texts = parsed["input_texts"]
else:
# Single text string
input_texts = [{"text": raw_input, "post_id": "single_text"}]
except json.JSONDecodeError:
# Plain text string
input_texts = [{"text": raw_input, "post_id": "plain_text"}]
elif isinstance(raw_input, list):
# Already a list - validate each item
for i, item in enumerate(raw_input):
if isinstance(item, dict):
input_texts.append(item)
elif isinstance(item, str):
# String item in list
try:
parsed_item = json.loads(item)
if isinstance(parsed_item, dict):
input_texts.append(parsed_item)
else:
input_texts.append({"text": item, "post_id": f"text_{i}"})
except json.JSONDecodeError:
input_texts.append({"text": item, "post_id": f"text_{i}"})
else:
input_texts.append({"text": str(item), "post_id": f"text_{i}"})
elif isinstance(raw_input, dict):
# Single dict
input_texts = [raw_input]
logger.info(
f"[VectorizationAgent] DEBUG: Parsed {len(input_texts)} input texts"
)
if not input_texts:
logger.warning("[VectorizationAgent] No input texts provided")
return {
"current_step": "language_detection",
"language_detection_results": [],
"errors": ["No input texts provided"],
}
results = []
lang_counts = {"english": 0, "sinhala": 0, "tamil": 0, "unknown": 0}
for item in input_texts:
text = item.get("text", "")
post_id = item.get("post_id", "")
if VECTORIZER_AVAILABLE:
language, confidence = detect_language(text)
else:
# Fallback: simple detection
language, confidence = self._simple_detect(text)
lang_counts[language] = lang_counts.get(language, 0) + 1
results.append(
{
"post_id": post_id,
"text": text,
"language": language,
"confidence": confidence,
"model_to_use": self.MODEL_INFO.get(
language, self.MODEL_INFO["english"]
)["hf_name"],
}
)
logger.info(f"[VectorizationAgent] Language distribution: {lang_counts}")
return {
"current_step": "language_detection",
"language_detection_results": results,
"processing_stats": {
"total_texts": len(input_texts),
"language_distribution": lang_counts,
},
}
def _simple_detect(self, text: str) -> tuple:
"""Simple fallback language detection based on Unicode ranges"""
sinhala_range = (0x0D80, 0x0DFF)
tamil_range = (0x0B80, 0x0BFF)
sinhala_count = sum(
1 for c in text if sinhala_range[0] <= ord(c) <= sinhala_range[1]
)
tamil_count = sum(1 for c in text if tamil_range[0] <= ord(c) <= tamil_range[1])
total = len(text)
if total == 0:
return "english", 0.5
if sinhala_count / total > 0.3:
return "sinhala", 0.8
if tamil_count / total > 0.3:
return "tamil", 0.8
return "english", 0.7
def vectorize_texts(self, state: VectorizationAgentState) -> Dict[str, Any]:
"""
Step 2: Convert texts to vectors using language-specific BERT models.
Downloads models locally from HuggingFace on first use.
"""
logger.info("[VectorizationAgent] STEP 2: Text Vectorization")
detection_results = state.get("language_detection_results", [])
if not detection_results:
logger.warning("[VectorizationAgent] No language detection results")
return {
"current_step": "vectorization",
"vector_embeddings": [],
"errors": ["No texts to vectorize"],
}
vectorizer = self._get_vectorizer()
embeddings = []
for item in detection_results:
text = item.get("text", "")
post_id = item.get("post_id", "")
language = item.get("language", "english")
try:
if vectorizer:
vector = vectorizer.vectorize(text, language)
else:
# Fallback: zero vector
vector = np.zeros(768)
embeddings.append(
{
"post_id": post_id,
"language": language,
"vector": (
vector.tolist()
if hasattr(vector, "tolist")
else list(vector)
),
"vector_dim": len(vector),
"model_used": self.MODEL_INFO.get(language, {}).get(
"name", "Unknown"
),
}
)
except Exception as e:
logger.error(
f"[VectorizationAgent] Vectorization error for {post_id}: {e}"
)
embeddings.append(
{
"post_id": post_id,
"language": language,
"vector": [0.0] * 768,
"vector_dim": 768,
"model_used": "fallback",
"error": str(e),
}
)
logger.info(f"[VectorizationAgent] Vectorized {len(embeddings)} texts")
return {
"current_step": "vectorization",
"vector_embeddings": embeddings,
"processing_stats": {
**state.get("processing_stats", {}),
"vectors_generated": len(embeddings),
"vector_dim": 768,
},
}
def run_anomaly_detection(self, state: VectorizationAgentState) -> Dict[str, Any]:
"""
Step 2.5: Run anomaly detection on vectorized embeddings.
Uses trained Isolation Forest model to identify anomalous content.
"""
logger.info("[VectorizationAgent] STEP 2.5: Anomaly Detection")
embeddings = state.get("vector_embeddings", [])
if not embeddings:
logger.warning("[VectorizationAgent] No embeddings for anomaly detection")
return {
"current_step": "anomaly_detection",
"anomaly_results": {
"status": "skipped",
"reason": "no_embeddings",
"anomalies": [],
"total_analyzed": 0,
},
}
# Try to load the trained model
anomaly_model = None
model_name = "none"
try:
import joblib
model_paths = [
# Embedding-only model (768-dim) - compatible with Vectorizer Agent
MODELS_PATH
/ "artifacts"
/ "model_trainer"
/ "isolation_forest_embeddings_only.joblib",
# Full-feature models (may have different dimensions)
MODELS_PATH / "output" / "isolation_forest_embeddings_only.joblib",
MODELS_PATH / "output" / "isolation_forest_model.joblib",
MODELS_PATH
/ "artifacts"
/ "model_trainer"
/ "isolation_forest_model.joblib",
MODELS_PATH / "output" / "lof_model.joblib",
]
for model_path in model_paths:
if model_path.exists():
anomaly_model = joblib.load(model_path)
model_name = model_path.stem
logger.info(
f"[VectorizationAgent] Loaded anomaly model: {model_path.name}"
)
break
except Exception as e:
logger.warning(f"[VectorizationAgent] Could not load anomaly model: {e}")
if anomaly_model is None:
logger.info(
"[VectorizationAgent] No trained model available - using severity-based fallback"
)
return {
"current_step": "anomaly_detection",
"anomaly_results": {
"status": "fallback",
"reason": "model_not_trained",
"message": "Using severity-based anomaly detection until model is trained",
"anomalies": [],
"total_analyzed": len(embeddings),
"model_used": "severity_heuristic",
},
}
# Run inference on each embedding
# IMPORTANT: The anomaly model was trained primarily on English embeddings.
# Different BERT models (SinhalaBERTo, Tamil-BERT, DistilBERT) produce embeddings
# in completely different vector spaces, so non-English texts would incorrectly
# appear as anomalies. We handle this by:
# 1. Only running the model on English texts
# 2. Using a content-based heuristic for non-English texts
anomalies = []
normal_count = 0
skipped_non_english = 0
for emb in embeddings:
try:
vector = emb.get("vector", [])
post_id = emb.get("post_id", "")
language = emb.get("language", "english")
if not vector or len(vector) != 768:
continue
# For non-English languages, skip anomaly detection
# The ML model was trained on English embeddings only.
# Different BERT models (SinhalaBERTo, Tamil-BERT) have completely
# different embedding spaces - Tamil embeddings have magnitude ~0.64
# while English has ~7.5 and Sinhala ~13.7. They cannot be compared.
if language in ["sinhala", "tamil"]:
skipped_non_english += 1
normal_count += 1 # Treat as normal (not anomalous)
continue
# For English texts, use the trained ML model
vector_array = np.array(vector).reshape(1, -1)
# Predict: -1 = anomaly, 1 = normal
prediction = anomaly_model.predict(vector_array)[0]
# Get anomaly score
if hasattr(anomaly_model, "decision_function"):
score = -anomaly_model.decision_function(vector_array)[0]
elif hasattr(anomaly_model, "score_samples"):
score = -anomaly_model.score_samples(vector_array)[0]
else:
score = 1.0 if prediction == -1 else 0.0
# Normalize score to 0-1
normalized_score = max(0, min(1, (score + 0.5)))
if prediction == -1:
anomalies.append(
{
"post_id": post_id,
"anomaly_score": float(normalized_score),
"is_anomaly": True,
"language": language,
"detection_method": "isolation_forest",
}
)
else:
normal_count += 1
except Exception as e:
logger.debug(
f"[VectorizationAgent] Anomaly check failed for {post_id}: {e}"
)
logger.info(
f"[VectorizationAgent] Anomaly detection: {len(anomalies)} anomalies, "
f"{normal_count} normal, {skipped_non_english} non-English (heuristic)"
)
return {
"current_step": "anomaly_detection",
"anomaly_results": {
"status": "success",
"model_used": model_name,
"total_analyzed": len(embeddings),
"anomalies_found": len(anomalies),
"normal_count": normal_count,
"anomalies": anomalies,
"anomaly_rate": len(anomalies) / len(embeddings) if embeddings else 0,
},
}
def run_trending_detection(self, state: VectorizationAgentState) -> Dict[str, Any]:
"""
Step 2.6: Detect trending topics from the input texts.
Extracts key entities/topics and tracks their mention velocity.
Identifies:
- Trending topics (momentum > 2x normal)
- Spike alerts (volume > 3x normal)
- Topics with increasing momentum
"""
logger.info("[VectorizationAgent] STEP 2.6: Trending Detection")
detection_results = state.get("language_detection_results", [])
if not detection_results:
logger.warning("[VectorizationAgent] No texts for trending detection")
return {
"current_step": "trending_detection",
"trending_results": {
"status": "skipped",
"reason": "no_texts",
"trending_topics": [],
"spike_alerts": [],
},
}
# Import trending detector
try:
from src.utils.trending_detector import (
get_trending_detector,
record_topic_mention,
get_trending_now,
get_spikes,
)
TRENDING_AVAILABLE = True
except ImportError as e:
logger.warning(f"[VectorizationAgent] Trending detector not available: {e}")
TRENDING_AVAILABLE = False
if not TRENDING_AVAILABLE:
return {
"current_step": "trending_detection",
"trending_results": {
"status": "unavailable",
"reason": "trending_detector_not_installed",
"trending_topics": [],
"spike_alerts": [],
},
}
# Extract entities and record mentions
entities_found = []
for item in detection_results:
text = item.get("text", "") # Field is 'text', not 'original_text'
language = item.get("language", "english")
post_id = item.get("post_id", "")
# Simple entity extraction (keywords, capitalized words, etc.)
# In production, you'd use NER or more sophisticated extraction
extracted = self._extract_entities(text, language)
for entity in extracted:
try:
# Record mention with trending detector
record_topic_mention(
topic=entity["text"],
source=entity.get("source", "feed"),
domain=entity.get("domain", "general"),
)
entities_found.append(
{
"entity": entity["text"],
"type": entity.get("type", "keyword"),
"post_id": post_id,
"language": language,
}
)
except Exception as e:
logger.debug(f"[VectorizationAgent] Failed to record mention: {e}")
# Get current trending topics and spikes
try:
trending_topics = get_trending_now(limit=10)
spike_alerts = get_spikes()
except Exception as e:
logger.warning(f"[VectorizationAgent] Failed to get trending data: {e}")
trending_topics = []
spike_alerts = []
logger.info(
f"[VectorizationAgent] Trending detection: {len(entities_found)} entities, "
f"{len(trending_topics)} trending, {len(spike_alerts)} spikes"
)
return {
"current_step": "trending_detection",
"trending_results": {
"status": "success",
"entities_extracted": len(entities_found),
"entities": entities_found[:20], # Limit for state size
"trending_topics": trending_topics,
"spike_alerts": spike_alerts,
},
}
def _extract_entities(
self, text: str, language: str = "english"
) -> List[Dict[str, Any]]:
"""
Extract entities/topics from text for trending tracking.
Uses simple heuristics:
- Capitalized words/phrases (potential proper nouns)
- Hashtags
- Common news keywords
In production, integrate with NER model for better extraction.
"""
entities = []
if not text:
return entities
import re
# Extract hashtags
hashtags = re.findall(r"#(\w+)", text)
for tag in hashtags:
entities.append(
{
"text": tag.lower(),
"type": "hashtag",
"source": "hashtag",
"domain": "social",
}
)
# Extract capitalized phrases (potential proper nouns)
# Match 1-4 consecutive capitalized words
cap_phrases = re.findall(r"\b([A-Z][a-z]+(?: [A-Z][a-z]+){0,3})\b", text)
for phrase in cap_phrases:
# Skip common words
if phrase.lower() not in [
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"i",
"he",
"she",
"it",
]:
entities.append(
{
"text": phrase,
"type": "proper_noun",
"source": "text",
"domain": "general",
}
)
# News/event keywords
news_keywords = [
"breaking",
"urgent",
"alert",
"emergency",
"crisis",
"earthquake",
"flood",
"tsunami",
"election",
"protest",
"strike",
"scandal",
"corruption",
"price",
"inflation",
]
text_lower = text.lower()
for keyword in news_keywords:
if keyword in text_lower:
entities.append(
{
"text": keyword,
"type": "news_keyword",
"source": "keyword_match",
"domain": "news",
}
)
# Deduplicate by text
seen = set()
unique_entities = []
for e in entities:
key = e["text"].lower()
if key not in seen:
seen.add(key)
unique_entities.append(e)
return unique_entities[:15] # Limit entities per text
def generate_expert_summary(self, state: VectorizationAgentState) -> Dict[str, Any]:
"""
Step 3: Use GroqLLM to generate expert summary combining all insights.
Identifies opportunities and threats from the vectorized content.
"""
logger.info("[VectorizationAgent] STEP 3: Expert Summary")
detection_results = state.get("language_detection_results", [])
embeddings = state.get("vector_embeddings", [])
# DEBUG: Log what we received from previous nodes
logger.info(
f"[VectorizationAgent] DEBUG expert_summary: state keys = {list(state.keys()) if isinstance(state, dict) else 'not dict'}"
)
logger.info(
f"[VectorizationAgent] DEBUG expert_summary: detection_results count = {len(detection_results)}"
)
logger.info(
f"[VectorizationAgent] DEBUG expert_summary: embeddings count = {len(embeddings)}"
)
if detection_results:
logger.info(
f"[VectorizationAgent] DEBUG expert_summary: first result = {detection_results[0]}"
)
if not detection_results:
logger.warning("[VectorizationAgent] No detection results received!")
return {
"current_step": "expert_summary",
"expert_summary": "No data available for analysis",
"opportunities": [],
"threats": [],
}
# Prepare context for LLM
texts_by_lang = {}
for item in detection_results:
lang = item.get("language", "english")
if lang not in texts_by_lang:
texts_by_lang[lang] = []
texts_by_lang[lang].append(item.get("text", "")[:200]) # First 200 chars
# Build prompt
prompt = f"""You are an expert analyst for a Sri Lankan intelligence monitoring system.
Analyze the following multilingual social media content and identify:
1. OPPORTUNITIES - potential positive developments, market opportunities, favorable conditions
2. THREATS - risks, negative sentiment, potential issues, compliance concerns
Content Summary:
- Total posts analyzed: {len(detection_results)}
- Languages detected: {list(texts_by_lang.keys())}
Sample content by language:
"""
for lang, texts in texts_by_lang.items():
prompt += f"\n{lang.upper()} ({len(texts)} posts):\n"
for i, text in enumerate(texts[:3]): # First 3 samples
prompt += f" {i+1}. {text[:100]}...\n"
prompt += """
Provide a structured analysis with:
1. Executive Summary (2-3 sentences)
2. Top 3 Opportunities (each with brief explanation)
3. Top 3 Threats/Risks (each with brief explanation)
4. Overall Sentiment (Positive/Neutral/Negative)
Format your response in a clear, structured manner."""
try:
response = self.llm.invoke(prompt)
expert_summary = (
response.content if hasattr(response, "content") else str(response)
)
except Exception as e:
logger.error(f"[VectorizationAgent] LLM error: {e}")
expert_summary = f"Analysis failed: {str(e)}"
# Parse opportunities and threats (simple extraction for now)
opportunities = []
threats = []
if "opportunity" in expert_summary.lower():
opportunities.append(
{
"type": "extracted",
"description": "Opportunities detected in content",
"confidence": 0.7,
}
)
if "threat" in expert_summary.lower() or "risk" in expert_summary.lower():
threats.append(
{
"type": "extracted",
"description": "Threats/risks detected in content",
"confidence": 0.7,
}
)
logger.info("[VectorizationAgent] Expert summary generated")
return {
"current_step": "expert_summary",
"expert_summary": expert_summary,
"opportunities": opportunities,
"threats": threats,
"llm_response": expert_summary,
}
def format_final_output(self, state: VectorizationAgentState) -> Dict[str, Any]:
"""
Step 5: Format final output for downstream consumption.
Prepares domain_insights for integration with parent graph.
Includes anomaly detection results.
"""
logger.info("[VectorizationAgent] STEP 5: Format Output")
batch_id = state.get("batch_id", datetime.now().strftime("%Y%m%d_%H%M%S"))
processing_stats = state.get("processing_stats", {})
expert_summary = state.get("expert_summary", "")
opportunities = state.get("opportunities", [])
threats = state.get("threats", [])
embeddings = state.get("vector_embeddings", [])
anomaly_results = state.get("anomaly_results", {})
# Build domain insights
domain_insights = []
# Main vectorization insight
domain_insights.append(
{
"event_id": f"vec_{batch_id}",
"domain": "vectorization",
"category": "text_analysis",
"summary": f"Processed {len(embeddings)} texts with multilingual BERT models",
"timestamp": datetime.now(timezone.utc).isoformat(),
"severity": "low",
"impact_type": "analysis",
"confidence": 0.9,
"metadata": {
"total_texts": len(embeddings),
"languages": processing_stats.get("language_distribution", {}),
"models_used": list(
set(e.get("model_used", "") for e in embeddings)
),
},
}
)
# Add anomaly detection insight
anomalies = anomaly_results.get("anomalies", [])
anomaly_status = anomaly_results.get("status", "unknown")
if anomaly_status == "success" and anomalies:
# Add summary insight for anomaly detection
domain_insights.append(
{
"event_id": f"anomaly_{batch_id}",
"domain": "anomaly_detection",
"category": "ml_analysis",
"summary": f"ML Anomaly Detection: {len(anomalies)} anomalies found in {anomaly_results.get('total_analyzed', 0)} texts",
"timestamp": datetime.now(timezone.utc).isoformat(),
"severity": "high" if len(anomalies) > 5 else "medium",
"impact_type": "risk",
"confidence": 0.85,
"metadata": {
"model_used": anomaly_results.get("model_used", "unknown"),
"anomaly_rate": anomaly_results.get("anomaly_rate", 0),
"total_analyzed": anomaly_results.get("total_analyzed", 0),
},
}
)
# Add individual anomaly events
for i, anomaly in enumerate(anomalies[:10]): # Limit to top 10
domain_insights.append(
{
"event_id": f"anomaly_{batch_id}_{i}",
"domain": "anomaly_detection",
"category": "anomaly",
"summary": f"Anomaly detected (score: {anomaly.get('anomaly_score', 0):.2f})",
"timestamp": datetime.now(timezone.utc).isoformat(),
"severity": (
"high"
if anomaly.get("anomaly_score", 0) > 0.7
else "medium"
),
"impact_type": "risk",
"confidence": anomaly.get("anomaly_score", 0.5),
"is_anomaly": True,
"anomaly_score": anomaly.get("anomaly_score", 0),
"metadata": {
"post_id": anomaly.get("post_id", ""),
"language": anomaly.get("language", "unknown"),
},
}
)
elif anomaly_status == "fallback":
domain_insights.append(
{
"event_id": f"anomaly_info_{batch_id}",
"domain": "anomaly_detection",
"category": "system_info",
"summary": "ML model not trained yet - using severity-based fallback",
"timestamp": datetime.now(timezone.utc).isoformat(),
"severity": "low",
"impact_type": "info",
"confidence": 1.0,
}
)
# Add opportunity insights
for i, opp in enumerate(opportunities):
domain_insights.append(
{
"event_id": f"opp_{batch_id}_{i}",
"domain": "vectorization",
"category": "opportunity",
"summary": opp.get("description", "Opportunity detected"),
"timestamp": datetime.now(timezone.utc).isoformat(),
"severity": "medium",
"impact_type": "opportunity",
"confidence": opp.get("confidence", 0.7),
}
)
# Add threat insights
for i, threat in enumerate(threats):
domain_insights.append(
{
"event_id": f"threat_{batch_id}_{i}",
"domain": "vectorization",
"category": "threat",
"summary": threat.get("description", "Threat detected"),
"timestamp": datetime.now(timezone.utc).isoformat(),
"severity": "high",
"impact_type": "risk",
"confidence": threat.get("confidence", 0.7),
}
)
# Final output
final_output = {
"batch_id": batch_id,
"timestamp": datetime.now(timezone.utc).isoformat(),
"total_texts": len(embeddings),
"processing_stats": processing_stats,
"expert_summary": expert_summary,
"opportunities_count": len(opportunities),
"threats_count": len(threats),
"vector_dimensions": 768,
"anomaly_detection": {
"status": anomaly_status,
"anomalies_found": len(anomalies),
"model_used": anomaly_results.get("model_used", "none"),
"anomaly_rate": anomaly_results.get("anomaly_rate", 0),
},
"status": "SUCCESS",
}
logger.info(
f"[VectorizationAgent] ✓ Output formatted: {len(domain_insights)} insights (inc. {len(anomalies)} anomalies)"
)
return {
"current_step": "complete",
"domain_insights": domain_insights,
"final_output": final_output,
"structured_output": final_output,
"anomaly_results": anomaly_results, # Pass through for downstream
}
|