File size: 42,012 Bytes
b4856f1 4134ab0 b4856f1 752f5cc b4856f1 4134ab0 b4856f1 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4856f1 4134ab0 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 4134ab0 b4c4175 4134ab0 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4c4175 4134ab0 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 765b37c b4856f1 765b37c 752f5cc b4856f1 765b37c 752f5cc b4856f1 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c b4856f1 765b37c b4856f1 765b37c b4856f1 765b37c b4856f1 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 765b37c b4856f1 752f5cc b4856f1 765b37c b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 765b37c b4856f1 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 16ec2cf b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 |
"""
src/nodes/socialAgentNode.py
MODULAR - Social Agent Node with Subgraph Architecture
Monitors trending topics, events, people, social intelligence across geographic scopes
Updated: Uses Tool Factory pattern for parallel execution safety.
Each agent instance gets its own private set of tools.
Updated: Now loads user-defined keywords and profiles from intel config.
"""
import json
import uuid
import os
from typing import Dict, Any, List
from datetime import datetime
from src.states.socialAgentState import SocialAgentState
from src.utils.tool_factory import create_tool_set
from src.llms.groqllm import GroqLLM
def load_intel_config() -> dict:
"""Load intel config from JSON file (same as main.py)."""
config_path = os.path.join(
os.path.dirname(__file__), "..", "..", "data", "intel_config.json"
)
default_config = {
"user_profiles": {"twitter": [], "facebook": [], "linkedin": []},
"user_keywords": [],
"user_products": [],
}
try:
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
pass
return default_config
class SocialAgentNode:
"""
Modular Social Agent - Geographic social intelligence collection.
Module 1: Trending Topics (Sri Lanka specific trends)
Module 2: Social Media (Sri Lanka, Asia, World scopes)
Module 3: Feed Generation (Categorize, Summarize, Format)
Module 4: User-Defined Keywords & Profiles (from frontend config)
Thread Safety:
Each SocialAgentNode instance creates its own private ToolSet,
enabling safe parallel execution with other agents.
"""
def __init__(self, llm=None):
"""Initialize with Groq LLM and private tool set"""
# Create PRIVATE tool instances for this agent
# This enables parallel execution without shared state conflicts
self.tools = create_tool_set()
if llm is None:
groq = GroqLLM()
self.llm = groq.get_llm()
else:
self.llm = llm
# Load user-defined intel config (keywords, profiles, products)
self.intel_config = load_intel_config()
self.user_keywords = self.intel_config.get("user_keywords", [])
self.user_profiles = self.intel_config.get("user_profiles", {})
self.user_products = self.intel_config.get("user_products", [])
print(
f"[SocialAgent] Loaded {len(self.user_keywords)} user keywords, "
f"{sum(len(v) for v in self.user_profiles.values())} profiles"
)
# Geographic scopes
self.geographic_scopes = {
"sri_lanka": ["sri lanka", "colombo", "srilanka"],
"asia": [
"india",
"pakistan",
"bangladesh",
"maldives",
"singapore",
"malaysia",
"thailand",
],
"world": ["global", "international", "breaking news", "world events"],
}
# Trending categories
self.trending_categories = [
"events",
"people",
"viral",
"breaking",
"technology",
"culture",
]
# ============================================
# MODULE 1: TRENDING TOPICS COLLECTION
# ============================================
def collect_sri_lanka_trends(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 1: Collect Sri Lankan trending topics
"""
print("[MODULE 1] Collecting Sri Lankan Trending Topics")
trending_results = []
# Twitter - Sri Lanka Trends
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{"query": "sri lanka trending viral", "max_items": 20}
)
trending_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "trending",
"scope": "sri_lanka",
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Twitter Sri Lanka Trends")
except Exception as e:
print(f" ⚠️ Twitter error: {e}")
# Reddit - Sri Lanka
try:
reddit_tool = self.tools.get("scrape_reddit")
if reddit_tool:
reddit_data = reddit_tool.invoke(
{
"keywords": [
"sri lanka trending",
"sri lanka viral",
"sri lanka news",
],
"limit": 20,
"subreddit": "srilanka",
}
)
trending_results.append(
{
"source_tool": "scrape_reddit",
"raw_content": str(reddit_data),
"category": "trending",
"scope": "sri_lanka",
"platform": "reddit",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Reddit Sri Lanka Trends")
except Exception as e:
print(f" ⚠️ Reddit error: {e}")
return {
"worker_results": trending_results,
"latest_worker_results": trending_results,
}
# ============================================
# MODULE 2: SOCIAL MEDIA COLLECTION
# ============================================
def collect_sri_lanka_social_media(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 2A: Collect Sri Lankan social media across all platforms
"""
print("[MODULE 2A] Collecting Sri Lankan Social Media")
social_results = []
# Twitter - Sri Lanka Events & People
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{"query": "sri lanka events people celebrities", "max_items": 15}
)
social_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "social",
"scope": "sri_lanka",
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Twitter Sri Lanka Social")
except Exception as e:
print(f" ⚠️ Twitter error: {e}")
# Facebook - Sri Lanka
try:
facebook_tool = self.tools.get("scrape_facebook")
if facebook_tool:
facebook_data = facebook_tool.invoke(
{
"keywords": ["sri lanka events", "sri lanka trending"],
"max_items": 10,
}
)
social_results.append(
{
"source_tool": "scrape_facebook",
"raw_content": str(facebook_data),
"category": "social",
"scope": "sri_lanka",
"platform": "facebook",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Facebook Sri Lanka Social")
except Exception as e:
print(f" ⚠️ Facebook error: {e}")
# LinkedIn - Sri Lanka Professional
try:
linkedin_tool = self.tools.get("scrape_linkedin")
if linkedin_tool:
linkedin_data = linkedin_tool.invoke(
{
"keywords": ["sri lanka events", "sri lanka people"],
"max_items": 5,
}
)
social_results.append(
{
"source_tool": "scrape_linkedin",
"raw_content": str(linkedin_data),
"category": "social",
"scope": "sri_lanka",
"platform": "linkedin",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ LinkedIn Sri Lanka Professional")
except Exception as e:
print(f" ⚠️ LinkedIn error: {e}")
# Instagram - Sri Lanka
try:
instagram_tool = self.tools.get("scrape_instagram")
if instagram_tool:
instagram_data = instagram_tool.invoke(
{"keywords": ["srilankaevents", "srilankatrending"], "max_items": 5}
)
social_results.append(
{
"source_tool": "scrape_instagram",
"raw_content": str(instagram_data),
"category": "social",
"scope": "sri_lanka",
"platform": "instagram",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Instagram Sri Lanka")
except Exception as e:
print(f" ⚠️ Instagram error: {e}")
return {
"worker_results": social_results,
"social_media_results": social_results,
}
def collect_asia_social_media(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 2B: Collect Asian regional social media
"""
print("[MODULE 2B] Collecting Asian Regional Social Media")
asia_results = []
# Twitter - Asian Events
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{
"query": "asia trending india pakistan bangladesh",
"max_items": 15,
}
)
asia_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "social",
"scope": "asia",
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Twitter Asia Trends")
except Exception as e:
print(f" ⚠️ Twitter error: {e}")
# Facebook - Asia
try:
facebook_tool = self.tools.get("scrape_facebook")
if facebook_tool:
facebook_data = facebook_tool.invoke(
{"keywords": ["asia trending", "india events"], "max_items": 10}
)
asia_results.append(
{
"source_tool": "scrape_facebook",
"raw_content": str(facebook_data),
"category": "social",
"scope": "asia",
"platform": "facebook",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Facebook Asia")
except Exception as e:
print(f" ⚠️ Facebook error: {e}")
# Reddit - Asian subreddits
try:
reddit_tool = self.tools.get("scrape_reddit")
if reddit_tool:
reddit_data = reddit_tool.invoke(
{
"keywords": ["asia trending", "india", "pakistan"],
"limit": 10,
"subreddit": "asia",
}
)
asia_results.append(
{
"source_tool": "scrape_reddit",
"raw_content": str(reddit_data),
"category": "social",
"scope": "asia",
"platform": "reddit",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Reddit Asia")
except Exception as e:
print(f" ⚠️ Reddit error: {e}")
return {"worker_results": asia_results, "social_media_results": asia_results}
def collect_world_social_media(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 2C: Collect world/global trending topics
"""
print("[MODULE 2C] Collecting World Trending Topics")
world_results = []
# Twitter - World Trends
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{"query": "world trending global breaking news", "max_items": 15}
)
world_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "social",
"scope": "world",
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Twitter World Trends")
except Exception as e:
print(f" ⚠️ Twitter error: {e}")
# Reddit - World News
try:
reddit_tool = self.tools.get("scrape_reddit")
if reddit_tool:
reddit_data = reddit_tool.invoke(
{
"keywords": ["breaking", "trending", "viral"],
"limit": 15,
"subreddit": "worldnews",
}
)
world_results.append(
{
"source_tool": "scrape_reddit",
"raw_content": str(reddit_data),
"category": "social",
"scope": "world",
"platform": "reddit",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Reddit World News")
except Exception as e:
print(f" ⚠️ Reddit error: {e}")
return {"worker_results": world_results, "social_media_results": world_results}
def collect_user_defined_targets(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 2D: Collect data for USER-DEFINED keywords and profiles.
These are configured via the frontend Intelligence Settings UI.
"""
print("[MODULE 2D] Collecting User-Defined Targets")
user_results = []
# Reload config to get latest user settings
self.intel_config = load_intel_config()
self.user_keywords = self.intel_config.get("user_keywords", [])
self.user_profiles = self.intel_config.get("user_profiles", {})
self.user_products = self.intel_config.get("user_products", [])
# Skip if no user config
if not self.user_keywords and not any(self.user_profiles.values()):
print(" ⏭️ No user-defined targets configured")
return {"worker_results": [], "user_target_results": []}
# ============================================
# Scrape USER KEYWORDS across Twitter
# ============================================
if self.user_keywords:
print(f" 📝 Scraping {len(self.user_keywords)} user keywords...")
twitter_tool = self.tools.get("scrape_twitter")
for keyword in self.user_keywords[:10]: # Limit to 10 keywords
try:
if twitter_tool:
twitter_data = twitter_tool.invoke(
{"query": keyword, "max_items": 5}
)
user_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "user_keyword",
"scope": "sri_lanka",
"platform": "twitter",
"keyword": keyword,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Keyword: '{keyword}'")
except Exception as e:
print(f" ⚠️ Keyword '{keyword}' error: {e}")
# ============================================
# Scrape USER PRODUCTS
# ============================================
if self.user_products:
print(f" 📦 Scraping {len(self.user_products)} user products...")
twitter_tool = self.tools.get("scrape_twitter")
for product in self.user_products[:5]: # Limit to 5 products
try:
if twitter_tool:
twitter_data = twitter_tool.invoke(
{
"query": f"{product} review OR {product} Sri Lanka",
"max_items": 3,
}
)
user_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "user_product",
"scope": "sri_lanka",
"platform": "twitter",
"product": product,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Product: '{product}'")
except Exception as e:
print(f" ⚠️ Product '{product}' error: {e}")
# ============================================
# Scrape USER TWITTER PROFILES
# ============================================
twitter_profiles = self.user_profiles.get("twitter", [])
if twitter_profiles:
print(f" 👤 Scraping {len(twitter_profiles)} Twitter profiles...")
twitter_tool = self.tools.get("scrape_twitter")
for profile in twitter_profiles[:10]: # Limit to 10 profiles
try:
# Clean profile handle
handle = profile.replace("@", "").strip()
if twitter_tool:
# Search for tweets mentioning this profile
twitter_data = twitter_tool.invoke(
{"query": f"from:{handle} OR @{handle}", "max_items": 5}
)
user_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "user_profile",
"scope": "sri_lanka",
"platform": "twitter",
"profile": f"@{handle}",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Profile: @{handle}")
except Exception as e:
print(f" ⚠️ Profile @{profile} error: {e}")
print(f" ✅ User targets: {len(user_results)} results collected")
return {"worker_results": user_results, "user_target_results": user_results}
# ============================================
# MODULE 3: FEED GENERATION
# ============================================
def categorize_by_geography(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 3A: Categorize all collected results by geographic scope
"""
print("[MODULE 3A] Categorizing Results by Geography")
all_results = state.get("worker_results", []) or []
# Initialize categories
sri_lanka_data = []
asia_data = []
world_data = []
geographic_data = {"sri_lanka": [], "asia": [], "world": []}
for r in all_results:
scope = r.get("scope", "unknown")
content = r.get("raw_content", "")
# Parse content
try:
data = json.loads(content)
if isinstance(data, dict) and "error" in data:
continue
if isinstance(data, str):
data = json.loads(data)
posts = []
if isinstance(data, list):
posts = data
elif isinstance(data, dict):
posts = data.get("results", []) or data.get("data", [])
if not posts:
posts = [data]
# Categorize
if scope == "sri_lanka":
sri_lanka_data.extend(posts[:10])
geographic_data["sri_lanka"].extend(posts[:10])
elif scope == "asia":
asia_data.extend(posts[:10])
geographic_data["asia"].extend(posts[:10])
elif scope == "world":
world_data.extend(posts[:10])
geographic_data["world"].extend(posts[:10])
except Exception:
continue
# Create structured feeds
structured_feeds = {
"sri lanka": sri_lanka_data,
"asia": asia_data,
"world": world_data,
}
print(
f" ✓ Categorized: {len(sri_lanka_data)} Sri Lanka, {len(asia_data)} Asia, {len(world_data)} World"
)
return {
"structured_output": structured_feeds,
"geographic_feeds": geographic_data,
"sri_lanka_feed": sri_lanka_data,
"asia_feed": asia_data,
"world_feed": world_data,
}
def generate_llm_summary(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 3B: Use Groq LLM to generate executive summary AND structured insights
"""
print("[MODULE 3B] Generating LLM Summary + Structured Insights")
structured_feeds = state.get("structured_output", {})
llm_summary = "AI summary currently unavailable."
llm_insights = []
try:
# Collect sample posts for analysis
all_posts = []
for region, posts in structured_feeds.items():
for p in posts[:5]: # Top 5 per region
text = p.get("text", "") or p.get("title", "")
if text and len(text) > 20:
all_posts.append(f"[{region.upper()}] {text[:200]}")
if not all_posts:
return {"llm_summary": llm_summary, "llm_insights": []}
posts_text = "\n".join(all_posts[:15])
# Generate summary AND structured insights
analysis_prompt = f"""Analyze these social media posts from Sri Lanka and the region. Generate:
1. A 3-sentence executive summary of key trends
2. Up to 5 unique intelligence insights
Posts:
{posts_text}
Respond in this exact JSON format:
{{
"executive_summary": "Brief 3-sentence summary of key social trends and developments",
"insights": [
{{"summary": "Unique insight #1 (not copying post text)", "severity": "low/medium/high", "impact_type": "risk/opportunity"}},
{{"summary": "Unique insight #2", "severity": "low/medium/high", "impact_type": "risk/opportunity"}}
]
}}
Rules:
- Generate NEW insights, don't just copy post text
- Identify patterns and emerging trends
- Classify severity based on potential impact
- Mark positive developments as "opportunity", concerning ones as "risk"
JSON only, no explanation:"""
llm_response = self.llm.invoke(analysis_prompt)
content = (
llm_response.content
if hasattr(llm_response, "content")
else str(llm_response)
)
# Parse JSON response
import re
content = content.strip()
if content.startswith("```"):
content = re.sub(r"^```\w*\n?", "", content)
content = re.sub(r"\n?```$", "", content)
result = json.loads(content)
llm_summary = result.get("executive_summary", llm_summary)
llm_insights = result.get("insights", [])
print(f" ✓ LLM generated {len(llm_insights)} unique insights")
except json.JSONDecodeError as e:
print(f" ⚠️ JSON parse error: {e}")
# Fallback to simple summary
try:
fallback_prompt = f"Summarize these social media trends in 3 sentences:\n{posts_text[:1500]}"
response = self.llm.invoke(fallback_prompt)
llm_summary = (
response.content if hasattr(response, "content") else str(response)
)
except Exception as fallback_error:
print(f" ⚠️ LLM fallback also failed: {fallback_error}")
except Exception as e:
print(f" ⚠️ LLM Error: {e}")
return {"llm_summary": llm_summary, "llm_insights": llm_insights}
def format_final_output(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 3C: Format final feed output with LLM-enhanced insights
"""
print("[MODULE 3C] Formatting Final Output")
llm_summary = state.get("llm_summary", "No summary available")
llm_insights = state.get("llm_insights", []) # NEW: Get LLM-generated insights
structured_feeds = state.get("structured_output", {})
trending_count = len(
[
r
for r in state.get("worker_results", [])
if r.get("category") == "trending"
]
)
social_count = len(
[
r
for r in state.get("worker_results", [])
if r.get("category") == "social"
]
)
sri_lanka_items = len(structured_feeds.get("sri lanka", []))
asia_items = len(structured_feeds.get("asia", []))
world_items = len(structured_feeds.get("world", []))
bulletin = f"""🌏 COMPREHENSIVE SOCIAL INTELLIGENCE FEED
{datetime.utcnow().strftime("%d %b %Y • %H:%M UTC")}
📊 EXECUTIVE SUMMARY (AI-Generated)
{llm_summary}
📈 DATA COLLECTION STATS
• Trending Topics: {trending_count} items
• Social Media Posts: {social_count} items
• Geographic Coverage: Sri Lanka, Asia, World
🔍 GEOGRAPHIC BREAKDOWN
• Sri Lanka: {sri_lanka_items} trending items
• Asia: {asia_items} regional items
• World: {world_items} global items
🌐 COVERAGE CATEGORIES
• Events: Public gatherings, launches, announcements
• People: Influencers, celebrities, public figures
• Viral Content: Trending posts, hashtags, memes
• Breaking: Real-time developments
🎯 INTELLIGENCE FOCUS
Monitoring social sentiment, trending topics, events, and people across:
- Sri Lanka (local intelligence)
- Asia (regional context: India, Pakistan, Bangladesh, ASEAN)
- World (global trends affecting local sentiment)
Source: Multi-platform aggregation (Twitter, Facebook, LinkedIn, Instagram, Reddit)
"""
# Create list for domain_insights (FRONTEND COMPATIBLE)
domain_insights = []
timestamp = datetime.utcnow().isoformat()
# PRIORITY 1: Add LLM-generated unique insights (these are curated and unique)
for insight in llm_insights:
if isinstance(insight, dict) and insight.get("summary"):
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "social",
"summary": f"🔍 {insight.get('summary', '')}", # Mark as AI-analyzed
"severity": insight.get("severity", "medium"),
"impact_type": insight.get("impact_type", "risk"),
"timestamp": timestamp,
"is_llm_generated": True, # Flag for frontend
}
)
print(f" ✓ Added {len(llm_insights)} LLM-generated insights")
# PRIORITY 2: Add top raw posts only if we need more (fallback)
# Only add raw posts if LLM didn't generate enough insights
if len(domain_insights) < 5:
# Sri Lankan districts for geographic tagging
districts = [
"colombo",
"gampaha",
"kalutara",
"kandy",
"matale",
"nuwara eliya",
"galle",
"matara",
"hambantota",
"jaffna",
"kilinochchi",
"mannar",
"mullaitivu",
"vavuniya",
"puttalam",
"kurunegala",
"anuradhapura",
"polonnaruwa",
"badulla",
"monaragala",
"ratnapura",
"kegalle",
"ampara",
"batticaloa",
"trincomalee",
]
# Add Sri Lanka posts as fallback
sri_lanka_data = structured_feeds.get("sri lanka", [])
for post in sri_lanka_data[:5]:
post_text = post.get("text", "") or post.get("title", "")
if not post_text or len(post_text) < 20:
continue
# Detect district
detected_district = "Sri Lanka"
for district in districts:
if district.lower() in post_text.lower():
detected_district = district.title()
break
# Determine severity
severity = "low"
if any(
kw in post_text.lower()
for kw in ["protest", "riot", "emergency", "violence", "crisis"]
):
severity = "high"
elif any(
kw in post_text.lower()
for kw in ["trending", "viral", "breaking", "update"]
):
severity = "medium"
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "social",
"summary": f"{detected_district}: {post_text[:200]}",
"severity": severity,
"impact_type": (
"risk" if severity in ["high", "medium"] else "opportunity"
),
"timestamp": timestamp,
"is_llm_generated": False,
}
)
# Add executive summary insight
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"structured_data": structured_feeds,
"domain": "social",
"summary": f"📊 Social Intelligence Summary: {llm_summary[:300]}",
"severity": "medium",
"impact_type": "risk",
"is_llm_generated": True,
}
)
print(f" ✓ Created {len(domain_insights)} total social intelligence insights")
return {
"final_feed": bulletin,
"feed_history": [bulletin],
"domain_insights": domain_insights,
}
# ============================================
# MODULE 4: FEED AGGREGATOR & STORAGE
# ============================================
def aggregate_and_store_feeds(self, state: SocialAgentState) -> Dict[str, Any]:
"""
Module 4: Aggregate, deduplicate, and store feeds
- Check uniqueness using Neo4j (URL + content hash)
- Store unique posts in Neo4j
- Store unique posts in ChromaDB for RAG
- Append to CSV dataset for ML training
"""
print("[MODULE 4] Aggregating and Storing Feeds")
from src.utils.db_manager import (
Neo4jManager,
ChromaDBManager,
extract_post_data,
)
import csv
import os
# Initialize database managers
neo4j_manager = Neo4jManager()
chroma_manager = ChromaDBManager()
# Get all worker results from state
all_worker_results = state.get("worker_results", [])
# Statistics
total_posts = 0
unique_posts = 0
duplicate_posts = 0
stored_neo4j = 0
stored_chroma = 0
stored_csv = 0
# Setup CSV dataset
dataset_dir = os.getenv("DATASET_PATH", "./datasets/social_feeds")
os.makedirs(dataset_dir, exist_ok=True)
csv_filename = f"social_feeds_{datetime.now().strftime('%Y%m')}.csv"
csv_path = os.path.join(dataset_dir, csv_filename)
# CSV headers
csv_headers = [
"post_id",
"timestamp",
"platform",
"category",
"scope",
"poster",
"post_url",
"title",
"text",
"content_hash",
"engagement_score",
"engagement_likes",
"engagement_shares",
"engagement_comments",
"source_tool",
]
# Check if CSV exists to determine if we need to write headers
file_exists = os.path.exists(csv_path)
try:
# Open CSV file in append mode
with open(csv_path, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_headers)
# Write headers if new file
if not file_exists:
writer.writeheader()
print(f" ✓ Created new CSV dataset: {csv_path}")
else:
print(f" ✓ Appending to existing CSV: {csv_path}")
# Process each worker result
for worker_result in all_worker_results:
category = worker_result.get("category", "unknown")
platform = worker_result.get("platform", "unknown")
source_tool = worker_result.get("source_tool", "")
scope = worker_result.get("scope", "")
# Parse raw content
raw_content = worker_result.get("raw_content", "")
if not raw_content:
continue
try:
# Try to parse JSON content
if isinstance(raw_content, str):
data = json.loads(raw_content)
else:
data = raw_content
# Handle different data structures
posts = []
if isinstance(data, list):
posts = data
elif isinstance(data, dict):
# Check for common result keys
posts = (
data.get("results")
or data.get("data")
or data.get("posts")
or data.get("items")
or []
)
# If still empty, treat the dict itself as a post
if not posts and (data.get("title") or data.get("text")):
posts = [data]
# Process each post
for raw_post in posts:
total_posts += 1
# Skip if error object
if isinstance(raw_post, dict) and "error" in raw_post:
continue
# Extract normalized post data
post_data = extract_post_data(
raw_post=raw_post,
category=category,
platform=platform,
source_tool=source_tool,
)
if not post_data:
continue
# Check uniqueness with Neo4j
is_dup = neo4j_manager.is_duplicate(
post_url=post_data["post_url"],
content_hash=post_data["content_hash"],
)
if is_dup:
duplicate_posts += 1
continue
# Unique post - store it
unique_posts += 1
# Store in Neo4j
if neo4j_manager.store_post(post_data):
stored_neo4j += 1
# Store in ChromaDB
if chroma_manager.add_document(post_data):
stored_chroma += 1
# Store in CSV
try:
csv_row = {
"post_id": post_data["post_id"],
"timestamp": post_data["timestamp"],
"platform": post_data["platform"],
"category": post_data["category"],
"scope": scope,
"poster": post_data["poster"],
"post_url": post_data["post_url"],
"title": post_data["title"],
"text": post_data["text"],
"content_hash": post_data["content_hash"],
"engagement_score": post_data["engagement"].get(
"score", 0
),
"engagement_likes": post_data["engagement"].get(
"likes", 0
),
"engagement_shares": post_data["engagement"].get(
"shares", 0
),
"engagement_comments": post_data["engagement"].get(
"comments", 0
),
"source_tool": post_data["source_tool"],
}
writer.writerow(csv_row)
stored_csv += 1
except Exception as e:
print(f" ⚠️ CSV write error: {e}")
except Exception as e:
print(f" ⚠️ Error processing worker result: {e}")
continue
except Exception as e:
print(f" ⚠️ CSV file error: {e}")
# Close database connections
neo4j_manager.close()
# Print statistics
print("\n 📊 AGGREGATION STATISTICS")
print(f" Total Posts Processed: {total_posts}")
print(f" Unique Posts: {unique_posts}")
print(f" Duplicate Posts: {duplicate_posts}")
print(f" Stored in Neo4j: {stored_neo4j}")
print(f" Stored in ChromaDB: {stored_chroma}")
print(f" Stored in CSV: {stored_csv}")
print(f" Dataset Path: {csv_path}")
# Get database counts
neo4j_total = neo4j_manager.get_post_count() if neo4j_manager.driver else 0
chroma_total = (
chroma_manager.get_document_count() if chroma_manager.collection else 0
)
print("\n 💾 DATABASE TOTALS")
print(f" Neo4j Total Posts: {neo4j_total}")
print(f" ChromaDB Total Docs: {chroma_total}")
return {
"aggregator_stats": {
"total_processed": total_posts,
"unique_posts": unique_posts,
"duplicate_posts": duplicate_posts,
"stored_neo4j": stored_neo4j,
"stored_chroma": stored_chroma,
"stored_csv": stored_csv,
"neo4j_total": neo4j_total,
"chroma_total": chroma_total,
},
"dataset_path": csv_path,
}
|