File size: 42,012 Bytes
b4856f1
 
 
 
 
 
 
4134ab0
 
b4856f1
752f5cc
b4856f1
 
4134ab0
 
b4856f1
 
 
 
 
 
4134ab0
 
b4c4175
 
 
4134ab0
 
 
b4c4175
4134ab0
 
 
 
 
 
 
 
 
 
b4856f1
 
 
 
 
 
4134ab0
752f5cc
b4856f1
 
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
4134ab0
 
 
 
 
b4c4175
 
 
 
 
4134ab0
b4856f1
 
 
752f5cc
 
 
 
 
 
 
 
 
 
b4856f1
752f5cc
b4856f1
752f5cc
 
 
 
 
 
 
 
b4856f1
 
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
 
 
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
 
b4856f1
4134ab0
 
 
 
 
 
b4c4175
4134ab0
b4c4175
4134ab0
 
 
 
 
b4c4175
4134ab0
 
 
 
b4c4175
4134ab0
 
 
 
 
 
b4c4175
4134ab0
 
 
 
 
 
b4c4175
 
 
 
 
 
 
 
 
 
 
4134ab0
 
 
b4c4175
4134ab0
 
 
 
 
 
b4c4175
4134ab0
 
 
 
b4c4175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4134ab0
 
 
 
b4c4175
4134ab0
 
 
 
 
 
 
b4c4175
4134ab0
 
 
 
 
 
 
 
 
b4c4175
 
 
 
 
 
 
 
 
 
 
4134ab0
 
 
b4c4175
4134ab0
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
 
 
 
 
 
 
752f5cc
b4856f1
 
 
 
 
 
 
 
 
 
752f5cc
16ec2cf
b4856f1
752f5cc
b4856f1
 
 
 
752f5cc
b4856f1
752f5cc
 
 
 
 
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
765b37c
b4856f1
765b37c
752f5cc
b4856f1
765b37c
 
752f5cc
b4856f1
765b37c
 
 
 
 
 
 
752f5cc
765b37c
 
752f5cc
765b37c
752f5cc
765b37c
 
 
 
b4856f1
765b37c
 
b4856f1
765b37c
 
 
 
 
 
 
 
b4856f1
765b37c
 
 
 
 
b4856f1
765b37c
 
 
752f5cc
 
 
 
 
 
765b37c
 
752f5cc
765b37c
 
752f5cc
 
 
765b37c
 
 
752f5cc
765b37c
752f5cc
765b37c
 
 
 
 
 
752f5cc
 
 
16ec2cf
 
b4856f1
 
752f5cc
 
 
b4856f1
 
765b37c
b4856f1
 
752f5cc
b4856f1
765b37c
b4856f1
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752f5cc
765b37c
b4856f1
 
752f5cc
765b37c
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
765b37c
752f5cc
765b37c
 
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765b37c
752f5cc
765b37c
 
 
 
 
 
752f5cc
765b37c
 
 
 
 
 
752f5cc
765b37c
 
752f5cc
 
 
 
765b37c
752f5cc
 
 
 
765b37c
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765b37c
752f5cc
 
 
 
 
 
 
 
 
 
 
 
765b37c
752f5cc
b4856f1
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
 
 
 
 
 
 
 
752f5cc
b4856f1
752f5cc
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
 
 
 
 
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
752f5cc
b4856f1
 
752f5cc
b4856f1
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
 
 
 
752f5cc
b4856f1
 
 
 
 
 
752f5cc
b4856f1
 
 
 
752f5cc
b4856f1
 
 
 
 
 
752f5cc
b4856f1
 
 
 
 
 
752f5cc
 
 
 
 
 
 
 
b4856f1
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
 
 
 
 
 
 
 
 
 
 
 
752f5cc
 
 
 
 
 
 
 
 
 
 
 
 
b4856f1
 
 
 
 
752f5cc
b4856f1
 
 
752f5cc
b4856f1
 
752f5cc
b4856f1
 
752f5cc
b4856f1
16ec2cf
b4856f1
 
 
 
 
 
 
752f5cc
b4856f1
 
752f5cc
 
 
 
16ec2cf
b4856f1
 
752f5cc
b4856f1
 
 
 
 
 
 
 
 
752f5cc
b4856f1
752f5cc
b4856f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
"""
src/nodes/socialAgentNode.py
MODULAR - Social Agent Node with Subgraph Architecture
Monitors trending topics, events, people, social intelligence across geographic scopes

Updated: Uses Tool Factory pattern for parallel execution safety.
Each agent instance gets its own private set of tools.

Updated: Now loads user-defined keywords and profiles from intel config.
"""

import json
import uuid
import os
from typing import Dict, Any, List
from datetime import datetime
from src.states.socialAgentState import SocialAgentState
from src.utils.tool_factory import create_tool_set
from src.llms.groqllm import GroqLLM


def load_intel_config() -> dict:
    """Load intel config from JSON file (same as main.py)."""
    config_path = os.path.join(
        os.path.dirname(__file__), "..", "..", "data", "intel_config.json"
    )
    default_config = {
        "user_profiles": {"twitter": [], "facebook": [], "linkedin": []},
        "user_keywords": [],
        "user_products": [],
    }
    try:
        if os.path.exists(config_path):
            with open(config_path, "r", encoding="utf-8") as f:
                return json.load(f)
    except Exception:
        pass
    return default_config


class SocialAgentNode:
    """
    Modular Social Agent - Geographic social intelligence collection.
    Module 1: Trending Topics (Sri Lanka specific trends)
    Module 2: Social Media (Sri Lanka, Asia, World scopes)
    Module 3: Feed Generation (Categorize, Summarize, Format)
    Module 4: User-Defined Keywords & Profiles (from frontend config)

    Thread Safety:
        Each SocialAgentNode instance creates its own private ToolSet,
        enabling safe parallel execution with other agents.
    """

    def __init__(self, llm=None):
        """Initialize with Groq LLM and private tool set"""
        # Create PRIVATE tool instances for this agent
        # This enables parallel execution without shared state conflicts
        self.tools = create_tool_set()

        if llm is None:
            groq = GroqLLM()
            self.llm = groq.get_llm()
        else:
            self.llm = llm

        # Load user-defined intel config (keywords, profiles, products)
        self.intel_config = load_intel_config()
        self.user_keywords = self.intel_config.get("user_keywords", [])
        self.user_profiles = self.intel_config.get("user_profiles", {})
        self.user_products = self.intel_config.get("user_products", [])

        print(
            f"[SocialAgent] Loaded {len(self.user_keywords)} user keywords, "
            f"{sum(len(v) for v in self.user_profiles.values())} profiles"
        )

        # Geographic scopes
        self.geographic_scopes = {
            "sri_lanka": ["sri lanka", "colombo", "srilanka"],
            "asia": [
                "india",
                "pakistan",
                "bangladesh",
                "maldives",
                "singapore",
                "malaysia",
                "thailand",
            ],
            "world": ["global", "international", "breaking news", "world events"],
        }

        # Trending categories
        self.trending_categories = [
            "events",
            "people",
            "viral",
            "breaking",
            "technology",
            "culture",
        ]

    # ============================================
    # MODULE 1: TRENDING TOPICS COLLECTION
    # ============================================

    def collect_sri_lanka_trends(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 1: Collect Sri Lankan trending topics
        """
        print("[MODULE 1] Collecting Sri Lankan Trending Topics")

        trending_results = []

        # Twitter - Sri Lanka Trends
        try:
            twitter_tool = self.tools.get("scrape_twitter")
            if twitter_tool:
                twitter_data = twitter_tool.invoke(
                    {"query": "sri lanka trending viral", "max_items": 20}
                )
                trending_results.append(
                    {
                        "source_tool": "scrape_twitter",
                        "raw_content": str(twitter_data),
                        "category": "trending",
                        "scope": "sri_lanka",
                        "platform": "twitter",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Twitter Sri Lanka Trends")
        except Exception as e:
            print(f"  ⚠️ Twitter error: {e}")

        # Reddit - Sri Lanka
        try:
            reddit_tool = self.tools.get("scrape_reddit")
            if reddit_tool:
                reddit_data = reddit_tool.invoke(
                    {
                        "keywords": [
                            "sri lanka trending",
                            "sri lanka viral",
                            "sri lanka news",
                        ],
                        "limit": 20,
                        "subreddit": "srilanka",
                    }
                )
                trending_results.append(
                    {
                        "source_tool": "scrape_reddit",
                        "raw_content": str(reddit_data),
                        "category": "trending",
                        "scope": "sri_lanka",
                        "platform": "reddit",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Reddit Sri Lanka Trends")
        except Exception as e:
            print(f"  ⚠️ Reddit error: {e}")

        return {
            "worker_results": trending_results,
            "latest_worker_results": trending_results,
        }

    # ============================================
    # MODULE 2: SOCIAL MEDIA COLLECTION
    # ============================================

    def collect_sri_lanka_social_media(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 2A: Collect Sri Lankan social media across all platforms
        """
        print("[MODULE 2A] Collecting Sri Lankan Social Media")

        social_results = []

        # Twitter - Sri Lanka Events & People
        try:
            twitter_tool = self.tools.get("scrape_twitter")
            if twitter_tool:
                twitter_data = twitter_tool.invoke(
                    {"query": "sri lanka events people celebrities", "max_items": 15}
                )
                social_results.append(
                    {
                        "source_tool": "scrape_twitter",
                        "raw_content": str(twitter_data),
                        "category": "social",
                        "scope": "sri_lanka",
                        "platform": "twitter",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Twitter Sri Lanka Social")
        except Exception as e:
            print(f"  ⚠️ Twitter error: {e}")

        # Facebook - Sri Lanka
        try:
            facebook_tool = self.tools.get("scrape_facebook")
            if facebook_tool:
                facebook_data = facebook_tool.invoke(
                    {
                        "keywords": ["sri lanka events", "sri lanka trending"],
                        "max_items": 10,
                    }
                )
                social_results.append(
                    {
                        "source_tool": "scrape_facebook",
                        "raw_content": str(facebook_data),
                        "category": "social",
                        "scope": "sri_lanka",
                        "platform": "facebook",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Facebook Sri Lanka Social")
        except Exception as e:
            print(f"  ⚠️ Facebook error: {e}")

        # LinkedIn - Sri Lanka Professional
        try:
            linkedin_tool = self.tools.get("scrape_linkedin")
            if linkedin_tool:
                linkedin_data = linkedin_tool.invoke(
                    {
                        "keywords": ["sri lanka events", "sri lanka people"],
                        "max_items": 5,
                    }
                )
                social_results.append(
                    {
                        "source_tool": "scrape_linkedin",
                        "raw_content": str(linkedin_data),
                        "category": "social",
                        "scope": "sri_lanka",
                        "platform": "linkedin",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ LinkedIn Sri Lanka Professional")
        except Exception as e:
            print(f"  ⚠️ LinkedIn error: {e}")

        # Instagram - Sri Lanka
        try:
            instagram_tool = self.tools.get("scrape_instagram")
            if instagram_tool:
                instagram_data = instagram_tool.invoke(
                    {"keywords": ["srilankaevents", "srilankatrending"], "max_items": 5}
                )
                social_results.append(
                    {
                        "source_tool": "scrape_instagram",
                        "raw_content": str(instagram_data),
                        "category": "social",
                        "scope": "sri_lanka",
                        "platform": "instagram",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Instagram Sri Lanka")
        except Exception as e:
            print(f"  ⚠️ Instagram error: {e}")

        return {
            "worker_results": social_results,
            "social_media_results": social_results,
        }

    def collect_asia_social_media(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 2B: Collect Asian regional social media
        """
        print("[MODULE 2B] Collecting Asian Regional Social Media")

        asia_results = []

        # Twitter - Asian Events
        try:
            twitter_tool = self.tools.get("scrape_twitter")
            if twitter_tool:
                twitter_data = twitter_tool.invoke(
                    {
                        "query": "asia trending india pakistan bangladesh",
                        "max_items": 15,
                    }
                )
                asia_results.append(
                    {
                        "source_tool": "scrape_twitter",
                        "raw_content": str(twitter_data),
                        "category": "social",
                        "scope": "asia",
                        "platform": "twitter",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Twitter Asia Trends")
        except Exception as e:
            print(f"  ⚠️ Twitter error: {e}")

        # Facebook - Asia
        try:
            facebook_tool = self.tools.get("scrape_facebook")
            if facebook_tool:
                facebook_data = facebook_tool.invoke(
                    {"keywords": ["asia trending", "india events"], "max_items": 10}
                )
                asia_results.append(
                    {
                        "source_tool": "scrape_facebook",
                        "raw_content": str(facebook_data),
                        "category": "social",
                        "scope": "asia",
                        "platform": "facebook",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Facebook Asia")
        except Exception as e:
            print(f"  ⚠️ Facebook error: {e}")

        # Reddit - Asian subreddits
        try:
            reddit_tool = self.tools.get("scrape_reddit")
            if reddit_tool:
                reddit_data = reddit_tool.invoke(
                    {
                        "keywords": ["asia trending", "india", "pakistan"],
                        "limit": 10,
                        "subreddit": "asia",
                    }
                )
                asia_results.append(
                    {
                        "source_tool": "scrape_reddit",
                        "raw_content": str(reddit_data),
                        "category": "social",
                        "scope": "asia",
                        "platform": "reddit",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Reddit Asia")
        except Exception as e:
            print(f"  ⚠️ Reddit error: {e}")

        return {"worker_results": asia_results, "social_media_results": asia_results}

    def collect_world_social_media(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 2C: Collect world/global trending topics
        """
        print("[MODULE 2C] Collecting World Trending Topics")

        world_results = []

        # Twitter - World Trends
        try:
            twitter_tool = self.tools.get("scrape_twitter")
            if twitter_tool:
                twitter_data = twitter_tool.invoke(
                    {"query": "world trending global breaking news", "max_items": 15}
                )
                world_results.append(
                    {
                        "source_tool": "scrape_twitter",
                        "raw_content": str(twitter_data),
                        "category": "social",
                        "scope": "world",
                        "platform": "twitter",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Twitter World Trends")
        except Exception as e:
            print(f"  ⚠️ Twitter error: {e}")

        # Reddit - World News
        try:
            reddit_tool = self.tools.get("scrape_reddit")
            if reddit_tool:
                reddit_data = reddit_tool.invoke(
                    {
                        "keywords": ["breaking", "trending", "viral"],
                        "limit": 15,
                        "subreddit": "worldnews",
                    }
                )
                world_results.append(
                    {
                        "source_tool": "scrape_reddit",
                        "raw_content": str(reddit_data),
                        "category": "social",
                        "scope": "world",
                        "platform": "reddit",
                        "timestamp": datetime.utcnow().isoformat(),
                    }
                )
                print("  ✓ Reddit World News")
        except Exception as e:
            print(f"  ⚠️ Reddit error: {e}")

        return {"worker_results": world_results, "social_media_results": world_results}

    def collect_user_defined_targets(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 2D: Collect data for USER-DEFINED keywords and profiles.
        These are configured via the frontend Intelligence Settings UI.
        """
        print("[MODULE 2D] Collecting User-Defined Targets")

        user_results = []

        # Reload config to get latest user settings
        self.intel_config = load_intel_config()
        self.user_keywords = self.intel_config.get("user_keywords", [])
        self.user_profiles = self.intel_config.get("user_profiles", {})
        self.user_products = self.intel_config.get("user_products", [])

        # Skip if no user config
        if not self.user_keywords and not any(self.user_profiles.values()):
            print("  ⏭️ No user-defined targets configured")
            return {"worker_results": [], "user_target_results": []}

        # ============================================
        # Scrape USER KEYWORDS across Twitter
        # ============================================
        if self.user_keywords:
            print(f"  📝 Scraping {len(self.user_keywords)} user keywords...")
            twitter_tool = self.tools.get("scrape_twitter")

            for keyword in self.user_keywords[:10]:  # Limit to 10 keywords
                try:
                    if twitter_tool:
                        twitter_data = twitter_tool.invoke(
                            {"query": keyword, "max_items": 5}
                        )
                        user_results.append(
                            {
                                "source_tool": "scrape_twitter",
                                "raw_content": str(twitter_data),
                                "category": "user_keyword",
                                "scope": "sri_lanka",
                                "platform": "twitter",
                                "keyword": keyword,
                                "timestamp": datetime.utcnow().isoformat(),
                            }
                        )
                        print(f"    ✓ Keyword: '{keyword}'")
                except Exception as e:
                    print(f"    ⚠️ Keyword '{keyword}' error: {e}")

        # ============================================
        # Scrape USER PRODUCTS
        # ============================================
        if self.user_products:
            print(f"  📦 Scraping {len(self.user_products)} user products...")
            twitter_tool = self.tools.get("scrape_twitter")

            for product in self.user_products[:5]:  # Limit to 5 products
                try:
                    if twitter_tool:
                        twitter_data = twitter_tool.invoke(
                            {
                                "query": f"{product} review OR {product} Sri Lanka",
                                "max_items": 3,
                            }
                        )
                        user_results.append(
                            {
                                "source_tool": "scrape_twitter",
                                "raw_content": str(twitter_data),
                                "category": "user_product",
                                "scope": "sri_lanka",
                                "platform": "twitter",
                                "product": product,
                                "timestamp": datetime.utcnow().isoformat(),
                            }
                        )
                        print(f"    ✓ Product: '{product}'")
                except Exception as e:
                    print(f"    ⚠️ Product '{product}' error: {e}")

        # ============================================
        # Scrape USER TWITTER PROFILES
        # ============================================
        twitter_profiles = self.user_profiles.get("twitter", [])
        if twitter_profiles:
            print(f"  👤 Scraping {len(twitter_profiles)} Twitter profiles...")
            twitter_tool = self.tools.get("scrape_twitter")

            for profile in twitter_profiles[:10]:  # Limit to 10 profiles
                try:
                    # Clean profile handle
                    handle = profile.replace("@", "").strip()
                    if twitter_tool:
                        # Search for tweets mentioning this profile
                        twitter_data = twitter_tool.invoke(
                            {"query": f"from:{handle} OR @{handle}", "max_items": 5}
                        )
                        user_results.append(
                            {
                                "source_tool": "scrape_twitter",
                                "raw_content": str(twitter_data),
                                "category": "user_profile",
                                "scope": "sri_lanka",
                                "platform": "twitter",
                                "profile": f"@{handle}",
                                "timestamp": datetime.utcnow().isoformat(),
                            }
                        )
                        print(f"    ✓ Profile: @{handle}")
                except Exception as e:
                    print(f"    ⚠️ Profile @{profile} error: {e}")

        print(f"  ✅ User targets: {len(user_results)} results collected")
        return {"worker_results": user_results, "user_target_results": user_results}

    # ============================================
    # MODULE 3: FEED GENERATION
    # ============================================

    def categorize_by_geography(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 3A: Categorize all collected results by geographic scope
        """
        print("[MODULE 3A] Categorizing Results by Geography")

        all_results = state.get("worker_results", []) or []

        # Initialize categories
        sri_lanka_data = []
        asia_data = []
        world_data = []
        geographic_data = {"sri_lanka": [], "asia": [], "world": []}

        for r in all_results:
            scope = r.get("scope", "unknown")
            content = r.get("raw_content", "")

            # Parse content
            try:
                data = json.loads(content)
                if isinstance(data, dict) and "error" in data:
                    continue

                if isinstance(data, str):
                    data = json.loads(data)

                posts = []
                if isinstance(data, list):
                    posts = data
                elif isinstance(data, dict):
                    posts = data.get("results", []) or data.get("data", [])
                    if not posts:
                        posts = [data]

                # Categorize
                if scope == "sri_lanka":
                    sri_lanka_data.extend(posts[:10])
                    geographic_data["sri_lanka"].extend(posts[:10])
                elif scope == "asia":
                    asia_data.extend(posts[:10])
                    geographic_data["asia"].extend(posts[:10])
                elif scope == "world":
                    world_data.extend(posts[:10])
                    geographic_data["world"].extend(posts[:10])

            except Exception:
                continue

        # Create structured feeds
        structured_feeds = {
            "sri lanka": sri_lanka_data,
            "asia": asia_data,
            "world": world_data,
        }

        print(
            f"  ✓ Categorized: {len(sri_lanka_data)} Sri Lanka, {len(asia_data)} Asia, {len(world_data)} World"
        )

        return {
            "structured_output": structured_feeds,
            "geographic_feeds": geographic_data,
            "sri_lanka_feed": sri_lanka_data,
            "asia_feed": asia_data,
            "world_feed": world_data,
        }

    def generate_llm_summary(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 3B: Use Groq LLM to generate executive summary AND structured insights
        """
        print("[MODULE 3B] Generating LLM Summary + Structured Insights")

        structured_feeds = state.get("structured_output", {})
        llm_summary = "AI summary currently unavailable."
        llm_insights = []

        try:
            # Collect sample posts for analysis
            all_posts = []
            for region, posts in structured_feeds.items():
                for p in posts[:5]:  # Top 5 per region
                    text = p.get("text", "") or p.get("title", "")
                    if text and len(text) > 20:
                        all_posts.append(f"[{region.upper()}] {text[:200]}")

            if not all_posts:
                return {"llm_summary": llm_summary, "llm_insights": []}

            posts_text = "\n".join(all_posts[:15])

            # Generate summary AND structured insights
            analysis_prompt = f"""Analyze these social media posts from Sri Lanka and the region. Generate:
1. A 3-sentence executive summary of key trends
2. Up to 5 unique intelligence insights

Posts:
{posts_text}

Respond in this exact JSON format:
{{
    "executive_summary": "Brief 3-sentence summary of key social trends and developments",
    "insights": [
        {{"summary": "Unique insight #1 (not copying post text)", "severity": "low/medium/high", "impact_type": "risk/opportunity"}},
        {{"summary": "Unique insight #2", "severity": "low/medium/high", "impact_type": "risk/opportunity"}}
    ]
}}

Rules:
- Generate NEW insights, don't just copy post text
- Identify patterns and emerging trends
- Classify severity based on potential impact
- Mark positive developments as "opportunity", concerning ones as "risk"

JSON only, no explanation:"""

            llm_response = self.llm.invoke(analysis_prompt)
            content = (
                llm_response.content
                if hasattr(llm_response, "content")
                else str(llm_response)
            )

            # Parse JSON response
            import re

            content = content.strip()
            if content.startswith("```"):
                content = re.sub(r"^```\w*\n?", "", content)
                content = re.sub(r"\n?```$", "", content)

            result = json.loads(content)
            llm_summary = result.get("executive_summary", llm_summary)
            llm_insights = result.get("insights", [])

            print(f"  ✓ LLM generated {len(llm_insights)} unique insights")

        except json.JSONDecodeError as e:
            print(f"  ⚠️ JSON parse error: {e}")
            # Fallback to simple summary
            try:
                fallback_prompt = f"Summarize these social media trends in 3 sentences:\n{posts_text[:1500]}"
                response = self.llm.invoke(fallback_prompt)
                llm_summary = (
                    response.content if hasattr(response, "content") else str(response)
                )
            except Exception as fallback_error:
                print(f"  ⚠️ LLM fallback also failed: {fallback_error}")
        except Exception as e:
            print(f"  ⚠️ LLM Error: {e}")

        return {"llm_summary": llm_summary, "llm_insights": llm_insights}

    def format_final_output(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 3C: Format final feed output with LLM-enhanced insights
        """
        print("[MODULE 3C] Formatting Final Output")

        llm_summary = state.get("llm_summary", "No summary available")
        llm_insights = state.get("llm_insights", [])  # NEW: Get LLM-generated insights
        structured_feeds = state.get("structured_output", {})

        trending_count = len(
            [
                r
                for r in state.get("worker_results", [])
                if r.get("category") == "trending"
            ]
        )
        social_count = len(
            [
                r
                for r in state.get("worker_results", [])
                if r.get("category") == "social"
            ]
        )

        sri_lanka_items = len(structured_feeds.get("sri lanka", []))
        asia_items = len(structured_feeds.get("asia", []))
        world_items = len(structured_feeds.get("world", []))

        bulletin = f"""🌏 COMPREHENSIVE SOCIAL INTELLIGENCE FEED
{datetime.utcnow().strftime("%d %b %Y • %H:%M UTC")}

📊 EXECUTIVE SUMMARY (AI-Generated)
{llm_summary}

📈 DATA COLLECTION STATS
• Trending Topics: {trending_count} items
• Social Media Posts: {social_count} items
• Geographic Coverage: Sri Lanka, Asia, World

🔍 GEOGRAPHIC BREAKDOWN
• Sri Lanka: {sri_lanka_items} trending items
• Asia: {asia_items} regional items
• World: {world_items} global items

🌐 COVERAGE CATEGORIES
• Events: Public gatherings, launches, announcements
• People: Influencers, celebrities, public figures
• Viral Content: Trending posts, hashtags, memes
• Breaking: Real-time developments

🎯 INTELLIGENCE FOCUS
Monitoring social sentiment, trending topics, events, and people across:
- Sri Lanka (local intelligence)
- Asia (regional context: India, Pakistan, Bangladesh, ASEAN)
- World (global trends affecting local sentiment)

Source: Multi-platform aggregation (Twitter, Facebook, LinkedIn, Instagram, Reddit)
"""

        # Create list for domain_insights (FRONTEND COMPATIBLE)
        domain_insights = []
        timestamp = datetime.utcnow().isoformat()

        # PRIORITY 1: Add LLM-generated unique insights (these are curated and unique)
        for insight in llm_insights:
            if isinstance(insight, dict) and insight.get("summary"):
                domain_insights.append(
                    {
                        "source_event_id": str(uuid.uuid4()),
                        "domain": "social",
                        "summary": f"🔍 {insight.get('summary', '')}",  # Mark as AI-analyzed
                        "severity": insight.get("severity", "medium"),
                        "impact_type": insight.get("impact_type", "risk"),
                        "timestamp": timestamp,
                        "is_llm_generated": True,  # Flag for frontend
                    }
                )

        print(f"  ✓ Added {len(llm_insights)} LLM-generated insights")

        # PRIORITY 2: Add top raw posts only if we need more (fallback)
        # Only add raw posts if LLM didn't generate enough insights
        if len(domain_insights) < 5:
            # Sri Lankan districts for geographic tagging
            districts = [
                "colombo",
                "gampaha",
                "kalutara",
                "kandy",
                "matale",
                "nuwara eliya",
                "galle",
                "matara",
                "hambantota",
                "jaffna",
                "kilinochchi",
                "mannar",
                "mullaitivu",
                "vavuniya",
                "puttalam",
                "kurunegala",
                "anuradhapura",
                "polonnaruwa",
                "badulla",
                "monaragala",
                "ratnapura",
                "kegalle",
                "ampara",
                "batticaloa",
                "trincomalee",
            ]

            # Add Sri Lanka posts as fallback
            sri_lanka_data = structured_feeds.get("sri lanka", [])
            for post in sri_lanka_data[:5]:
                post_text = post.get("text", "") or post.get("title", "")
                if not post_text or len(post_text) < 20:
                    continue

                # Detect district
                detected_district = "Sri Lanka"
                for district in districts:
                    if district.lower() in post_text.lower():
                        detected_district = district.title()
                        break

                # Determine severity
                severity = "low"
                if any(
                    kw in post_text.lower()
                    for kw in ["protest", "riot", "emergency", "violence", "crisis"]
                ):
                    severity = "high"
                elif any(
                    kw in post_text.lower()
                    for kw in ["trending", "viral", "breaking", "update"]
                ):
                    severity = "medium"

                domain_insights.append(
                    {
                        "source_event_id": str(uuid.uuid4()),
                        "domain": "social",
                        "summary": f"{detected_district}: {post_text[:200]}",
                        "severity": severity,
                        "impact_type": (
                            "risk" if severity in ["high", "medium"] else "opportunity"
                        ),
                        "timestamp": timestamp,
                        "is_llm_generated": False,
                    }
                )

        # Add executive summary insight
        domain_insights.append(
            {
                "source_event_id": str(uuid.uuid4()),
                "structured_data": structured_feeds,
                "domain": "social",
                "summary": f"📊 Social Intelligence Summary: {llm_summary[:300]}",
                "severity": "medium",
                "impact_type": "risk",
                "is_llm_generated": True,
            }
        )

        print(f"  ✓ Created {len(domain_insights)} total social intelligence insights")

        return {
            "final_feed": bulletin,
            "feed_history": [bulletin],
            "domain_insights": domain_insights,
        }

    # ============================================
    # MODULE 4: FEED AGGREGATOR & STORAGE
    # ============================================

    def aggregate_and_store_feeds(self, state: SocialAgentState) -> Dict[str, Any]:
        """
        Module 4: Aggregate, deduplicate, and store feeds
        - Check uniqueness using Neo4j (URL + content hash)
        - Store unique posts in Neo4j
        - Store unique posts in ChromaDB for RAG
        - Append to CSV dataset for ML training
        """
        print("[MODULE 4] Aggregating and Storing Feeds")

        from src.utils.db_manager import (
            Neo4jManager,
            ChromaDBManager,
            extract_post_data,
        )
        import csv
        import os

        # Initialize database managers
        neo4j_manager = Neo4jManager()
        chroma_manager = ChromaDBManager()

        # Get all worker results from state
        all_worker_results = state.get("worker_results", [])

        # Statistics
        total_posts = 0
        unique_posts = 0
        duplicate_posts = 0
        stored_neo4j = 0
        stored_chroma = 0
        stored_csv = 0

        # Setup CSV dataset
        dataset_dir = os.getenv("DATASET_PATH", "./datasets/social_feeds")
        os.makedirs(dataset_dir, exist_ok=True)

        csv_filename = f"social_feeds_{datetime.now().strftime('%Y%m')}.csv"
        csv_path = os.path.join(dataset_dir, csv_filename)

        # CSV headers
        csv_headers = [
            "post_id",
            "timestamp",
            "platform",
            "category",
            "scope",
            "poster",
            "post_url",
            "title",
            "text",
            "content_hash",
            "engagement_score",
            "engagement_likes",
            "engagement_shares",
            "engagement_comments",
            "source_tool",
        ]

        # Check if CSV exists to determine if we need to write headers
        file_exists = os.path.exists(csv_path)

        try:
            # Open CSV file in append mode
            with open(csv_path, "a", newline="", encoding="utf-8") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=csv_headers)

                # Write headers if new file
                if not file_exists:
                    writer.writeheader()
                    print(f"  ✓ Created new CSV dataset: {csv_path}")
                else:
                    print(f"  ✓ Appending to existing CSV: {csv_path}")

                # Process each worker result
                for worker_result in all_worker_results:
                    category = worker_result.get("category", "unknown")
                    platform = worker_result.get("platform", "unknown")
                    source_tool = worker_result.get("source_tool", "")
                    scope = worker_result.get("scope", "")

                    # Parse raw content
                    raw_content = worker_result.get("raw_content", "")
                    if not raw_content:
                        continue

                    try:
                        # Try to parse JSON content
                        if isinstance(raw_content, str):
                            data = json.loads(raw_content)
                        else:
                            data = raw_content

                        # Handle different data structures
                        posts = []
                        if isinstance(data, list):
                            posts = data
                        elif isinstance(data, dict):
                            # Check for common result keys
                            posts = (
                                data.get("results")
                                or data.get("data")
                                or data.get("posts")
                                or data.get("items")
                                or []
                            )

                            # If still empty, treat the dict itself as a post
                            if not posts and (data.get("title") or data.get("text")):
                                posts = [data]

                        # Process each post
                        for raw_post in posts:
                            total_posts += 1

                            # Skip if error object
                            if isinstance(raw_post, dict) and "error" in raw_post:
                                continue

                            # Extract normalized post data
                            post_data = extract_post_data(
                                raw_post=raw_post,
                                category=category,
                                platform=platform,
                                source_tool=source_tool,
                            )

                            if not post_data:
                                continue

                            # Check uniqueness with Neo4j
                            is_dup = neo4j_manager.is_duplicate(
                                post_url=post_data["post_url"],
                                content_hash=post_data["content_hash"],
                            )

                            if is_dup:
                                duplicate_posts += 1
                                continue

                            # Unique post - store it
                            unique_posts += 1

                            # Store in Neo4j
                            if neo4j_manager.store_post(post_data):
                                stored_neo4j += 1

                            # Store in ChromaDB
                            if chroma_manager.add_document(post_data):
                                stored_chroma += 1

                            # Store in CSV
                            try:
                                csv_row = {
                                    "post_id": post_data["post_id"],
                                    "timestamp": post_data["timestamp"],
                                    "platform": post_data["platform"],
                                    "category": post_data["category"],
                                    "scope": scope,
                                    "poster": post_data["poster"],
                                    "post_url": post_data["post_url"],
                                    "title": post_data["title"],
                                    "text": post_data["text"],
                                    "content_hash": post_data["content_hash"],
                                    "engagement_score": post_data["engagement"].get(
                                        "score", 0
                                    ),
                                    "engagement_likes": post_data["engagement"].get(
                                        "likes", 0
                                    ),
                                    "engagement_shares": post_data["engagement"].get(
                                        "shares", 0
                                    ),
                                    "engagement_comments": post_data["engagement"].get(
                                        "comments", 0
                                    ),
                                    "source_tool": post_data["source_tool"],
                                }
                                writer.writerow(csv_row)
                                stored_csv += 1
                            except Exception as e:
                                print(f"  ⚠️ CSV write error: {e}")

                    except Exception as e:
                        print(f"  ⚠️ Error processing worker result: {e}")
                        continue

        except Exception as e:
            print(f"  ⚠️ CSV file error: {e}")

        # Close database connections
        neo4j_manager.close()

        # Print statistics
        print("\n  📊 AGGREGATION STATISTICS")
        print(f"  Total Posts Processed: {total_posts}")
        print(f"  Unique Posts: {unique_posts}")
        print(f"  Duplicate Posts: {duplicate_posts}")
        print(f"  Stored in Neo4j: {stored_neo4j}")
        print(f"  Stored in ChromaDB: {stored_chroma}")
        print(f"  Stored in CSV: {stored_csv}")
        print(f"  Dataset Path: {csv_path}")

        # Get database counts
        neo4j_total = neo4j_manager.get_post_count() if neo4j_manager.driver else 0
        chroma_total = (
            chroma_manager.get_document_count() if chroma_manager.collection else 0
        )

        print("\n  💾 DATABASE TOTALS")
        print(f"  Neo4j Total Posts: {neo4j_total}")
        print(f"  ChromaDB Total Docs: {chroma_total}")

        return {
            "aggregator_stats": {
                "total_processed": total_posts,
                "unique_posts": unique_posts,
                "duplicate_posts": duplicate_posts,
                "stored_neo4j": stored_neo4j,
                "stored_chroma": stored_chroma,
                "stored_csv": stored_csv,
                "neo4j_total": neo4j_total,
                "chroma_total": chroma_total,
            },
            "dataset_path": csv_path,
        }