File size: 38,659 Bytes
b4856f1 752f5cc b4856f1 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 16ec2cf b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
"""
src/nodes/meteorologicalAgentNode.py
MODULAR - Meteorological Agent Node with Subgraph Architecture
Three modules: Official Sources, Social Media Collection, Feed Generation
Updated: Uses Tool Factory pattern for parallel execution safety.
Each agent instance gets its own private set of tools.
ENHANCED: Now includes RiverNet flood monitoring integration.
"""
import json
import uuid
from typing import Dict, Any
from datetime import datetime
from src.states.meteorologicalAgentState import MeteorologicalAgentState
from src.utils.tool_factory import create_tool_set
from src.utils.utils import tool_dmc_alerts, tool_weather_nowcast, tool_rivernet_status
from src.llms.groqllm import GroqLLM
class MeteorologicalAgentNode:
"""
Modular Meteorological Agent - Three independent collection modules.
Module 1: Official Weather Sources (DMC Alerts, Weather Nowcast, RiverNet)
Module 2: Social Media (National, District, Climate)
Module 3: Feed Generation (Categorize, Summarize, Format)
Thread Safety:
Each MeteorologicalAgentNode instance creates its own private ToolSet,
enabling safe parallel execution with other agents.
"""
def __init__(self, llm=None):
"""Initialize with Groq LLM and private tool set"""
# Create PRIVATE tool instances for this agent
self.tools = create_tool_set()
if llm is None:
groq = GroqLLM()
self.llm = groq.get_llm()
else:
self.llm = llm
# All 25 districts of Sri Lanka
self.districts = [
"colombo",
"gampaha",
"kalutara",
"kandy",
"matale",
"nuwara eliya",
"galle",
"matara",
"hambantota",
"jaffna",
"kilinochchi",
"mannar",
"mullaitivu",
"vavuniya",
"puttalam",
"kurunegala",
"anuradhapura",
"polonnaruwa",
"badulla",
"monaragala",
"ratnapura",
"kegalle",
"ampara",
"batticaloa",
"trincomalee",
]
# Key districts for weather monitoring
self.key_districts = ["colombo", "kandy", "galle", "jaffna", "trincomalee"]
# Key cities for weather nowcast
self.key_cities = [
"Colombo",
"Kandy",
"Galle",
"Jaffna",
"Trincomalee",
"Anuradhapura",
]
# ============================================
# MODULE 1: OFFICIAL WEATHER SOURCES
# ============================================
def collect_official_sources(
self, state: MeteorologicalAgentState
) -> Dict[str, Any]:
"""
Module 1: Collect official weather sources
- DMC Alerts (Disaster Management Centre)
- Weather Nowcast for key cities
- RiverNet flood monitoring data (NEW)
"""
print("[MODULE 1] Collecting Official Weather Sources")
official_results = []
river_data = None
# DMC Alerts
try:
dmc_data = tool_dmc_alerts()
official_results.append(
{
"source_tool": "dmc_alerts",
"raw_content": json.dumps(dmc_data),
"category": "official",
"subcategory": "dmc_alerts",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Collected DMC Alerts")
except Exception as e:
print(f" ⚠️ DMC Alerts error: {e}")
# RiverNet Flood Monitoring (NEW)
try:
river_data = tool_rivernet_status()
official_results.append(
{
"source_tool": "rivernet",
"raw_content": json.dumps(river_data),
"category": "official",
"subcategory": "flood_monitoring",
"timestamp": datetime.utcnow().isoformat(),
}
)
# Log summary
summary = river_data.get("summary", {})
overall_status = summary.get("overall_status", "unknown")
river_count = summary.get("total_monitored", 0)
print(
f" ✓ RiverNet: {river_count} rivers monitored, status: {overall_status}"
)
# Add any flood alerts
for alert in river_data.get("alerts", []):
official_results.append(
{
"source_tool": "rivernet_alert",
"raw_content": json.dumps(alert),
"category": "official",
"subcategory": "flood_alert",
"severity": alert.get("severity", "medium"),
"timestamp": datetime.utcnow().isoformat(),
}
)
except Exception as e:
print(f" ⚠️ RiverNet error: {e}")
# Weather Nowcast for key cities
for city in self.key_cities:
try:
weather_data = tool_weather_nowcast(location=city)
official_results.append(
{
"source_tool": "weather_nowcast",
"raw_content": json.dumps(weather_data),
"category": "official",
"subcategory": "weather_forecast",
"city": city,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Weather Nowcast for {city}")
except Exception as e:
print(f" ⚠️ Weather Nowcast {city} error: {e}")
return {
"worker_results": official_results,
"latest_worker_results": official_results,
"river_data": river_data, # Store river data separately for easy access
}
# ============================================
# MODULE 2: SOCIAL MEDIA COLLECTION
# ============================================
def collect_national_social_media(
self, state: MeteorologicalAgentState
) -> Dict[str, Any]:
"""
Module 2A: Collect national-level weather social media
"""
print("[MODULE 2A] Collecting National Weather Social Media")
social_results = []
# Twitter - National Weather
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{"query": "sri lanka weather forecast rain", "max_items": 15}
)
social_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "national",
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Twitter National Weather")
except Exception as e:
print(f" ⚠️ Twitter error: {e}")
# Facebook - National Weather
try:
facebook_tool = self.tools.get("scrape_facebook")
if facebook_tool:
facebook_data = facebook_tool.invoke(
{
"keywords": ["sri lanka weather", "sri lanka rain"],
"max_items": 10,
}
)
social_results.append(
{
"source_tool": "scrape_facebook",
"raw_content": str(facebook_data),
"category": "national",
"platform": "facebook",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Facebook National Weather")
except Exception as e:
print(f" ⚠️ Facebook error: {e}")
# LinkedIn - Climate & Weather
try:
linkedin_tool = self.tools.get("scrape_linkedin")
if linkedin_tool:
linkedin_data = linkedin_tool.invoke(
{
"keywords": ["sri lanka weather", "sri lanka climate"],
"max_items": 5,
}
)
social_results.append(
{
"source_tool": "scrape_linkedin",
"raw_content": str(linkedin_data),
"category": "national",
"platform": "linkedin",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ LinkedIn Weather/Climate")
except Exception as e:
print(f" ⚠️ LinkedIn error: {e}")
# Instagram - Weather
try:
instagram_tool = self.tools.get("scrape_instagram")
if instagram_tool:
instagram_data = instagram_tool.invoke(
{"keywords": ["srilankaweather"], "max_items": 5}
)
social_results.append(
{
"source_tool": "scrape_instagram",
"raw_content": str(instagram_data),
"category": "national",
"platform": "instagram",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Instagram Weather")
except Exception as e:
print(f" ⚠️ Instagram error: {e}")
# Reddit - Weather
try:
reddit_tool = self.tools.get("scrape_reddit")
if reddit_tool:
reddit_data = reddit_tool.invoke(
{
"keywords": ["sri lanka weather", "sri lanka rain"],
"limit": 10,
"subreddit": "srilanka",
}
)
social_results.append(
{
"source_tool": "scrape_reddit",
"raw_content": str(reddit_data),
"category": "national",
"platform": "reddit",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Reddit Weather")
except Exception as e:
print(f" ⚠️ Reddit error: {e}")
return {
"worker_results": social_results,
"social_media_results": social_results,
}
def collect_district_social_media(
self, state: MeteorologicalAgentState
) -> Dict[str, Any]:
"""
Module 2B: Collect district-level weather social media
"""
print(
f"[MODULE 2B] Collecting District Weather Social Media ({len(self.key_districts)} districts)"
)
district_results = []
for district in self.key_districts:
# Twitter per district
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{"query": f"{district} sri lanka weather", "max_items": 5}
)
district_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "district",
"district": district,
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Twitter {district.title()}")
except Exception as e:
print(f" ⚠️ Twitter {district} error: {e}")
# Facebook per district
try:
facebook_tool = self.tools.get("scrape_facebook")
if facebook_tool:
facebook_data = facebook_tool.invoke(
{"keywords": [f"{district} weather"], "max_items": 5}
)
district_results.append(
{
"source_tool": "scrape_facebook",
"raw_content": str(facebook_data),
"category": "district",
"district": district,
"platform": "facebook",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Facebook {district.title()}")
except Exception as e:
print(f" ⚠️ Facebook {district} error: {e}")
return {
"worker_results": district_results,
"social_media_results": district_results,
}
def collect_climate_alerts(self, state: MeteorologicalAgentState) -> Dict[str, Any]:
"""
Module 2C: Collect climate and disaster-related posts
"""
print("[MODULE 2C] Collecting Climate & Disaster Alerts")
climate_results = []
# Twitter - Climate & Disasters
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
twitter_data = twitter_tool.invoke(
{
"query": "sri lanka flood drought cyclone disaster",
"max_items": 10,
}
)
climate_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(twitter_data),
"category": "climate",
"platform": "twitter",
"timestamp": datetime.utcnow().isoformat(),
}
)
print(" ✓ Twitter Climate Alerts")
except Exception as e:
print(f" ⚠️ Twitter climate error: {e}")
return {
"worker_results": climate_results,
"social_media_results": climate_results,
}
# ============================================
# MODULE 3: FEED GENERATION
# ============================================
def categorize_by_geography(
self, state: MeteorologicalAgentState
) -> Dict[str, Any]:
"""
Module 3A: Categorize all collected results by geography and alert type
"""
print("[MODULE 3A] Categorizing Weather Results")
all_results = state.get("worker_results", []) or []
# Initialize categories
official_data = []
national_data = []
alert_data = []
district_data = {district: [] for district in self.districts}
for r in all_results:
category = r.get("category", "unknown")
district = r.get("district")
content = r.get("raw_content", "")
# Parse content
try:
data = json.loads(content)
if isinstance(data, dict) and "error" in data:
continue
if isinstance(data, str):
data = json.loads(data)
posts = []
if isinstance(data, list):
posts = data
elif isinstance(data, dict):
posts = data.get("results", []) or data.get("data", [])
if not posts:
posts = [data]
# Categorize
if category == "official":
official_data.extend(posts[:10])
# DMC alerts go to alert feed
if r.get("subcategory") == "dmc_alerts":
alert_data.extend(posts[:20])
elif category == "climate":
alert_data.extend(posts[:10])
elif category == "district" and district:
district_data[district].extend(posts[:5])
elif category == "national":
national_data.extend(posts[:10])
except Exception:
continue
# Create structured feeds
structured_feeds = {
"sri lanka weather": national_data + official_data,
"alerts": alert_data,
**{district: posts for district, posts in district_data.items() if posts},
}
print(
f" ✓ Categorized: {len(official_data)} official, {len(national_data)} national, {len(alert_data)} alerts"
)
print(
f" ✓ Districts with data: {len([d for d in district_data if district_data[d]])}"
)
return {
"structured_output": structured_feeds,
"district_feeds": district_data,
"national_feed": national_data + official_data,
"alert_feed": alert_data,
}
def generate_llm_summary(self, state: MeteorologicalAgentState) -> Dict[str, Any]:
"""
Module 3B: Use Groq LLM to generate executive summary
"""
print("[MODULE 3B] Generating LLM Summary")
structured_feeds = state.get("structured_output", {})
try:
summary_prompt = f"""Analyze the following meteorological intelligence data for Sri Lanka and create a concise executive summary.
Data Summary:
- National/Official Weather: {len(structured_feeds.get('sri lanka weather', []))} items
- Weather Alerts: {len(structured_feeds.get('alerts', []))} items
- District Coverage: {len([k for k in structured_feeds.keys() if k not in ['sri lanka weather', 'alerts']])} districts
Sample Data:
{json.dumps(structured_feeds, indent=2)[:2000]}
Generate a brief (3-5 sentences) executive summary highlighting the most important weather developments and alerts."""
llm_response = self.llm.invoke(summary_prompt)
llm_summary = (
llm_response.content
if hasattr(llm_response, "content")
else str(llm_response)
)
print(" ✓ LLM Summary Generated")
except Exception as e:
print(f" ⚠️ LLM Error: {e}")
llm_summary = "AI summary currently unavailable."
return {"llm_summary": llm_summary}
def format_final_output(self, state: MeteorologicalAgentState) -> Dict[str, Any]:
"""
Module 3C: Format final feed output
ENHANCED: Now includes RiverNet flood monitoring data
"""
print("[MODULE 3C] Formatting Final Output")
llm_summary = state.get("llm_summary", "No summary available")
structured_feeds = state.get("structured_output", {})
district_feeds = state.get("district_feeds", {})
river_data = state.get("river_data", {}) # NEW: River data
official_count = len(
[
r
for r in state.get("worker_results", [])
if r.get("category") == "official"
]
)
national_count = len(
[
r
for r in state.get("worker_results", [])
if r.get("category") == "national"
]
)
alert_count = len(
[
r
for r in state.get("worker_results", [])
if r.get("category") == "climate"
]
)
active_districts = len([d for d in district_feeds if district_feeds.get(d)])
# River monitoring stats
river_summary = river_data.get("summary", {}) if river_data else {}
rivers_monitored = river_summary.get("total_monitored", 0)
river_status = river_summary.get("overall_status", "unknown")
has_flood_alerts = river_summary.get("has_alerts", False)
change_detected = state.get("change_detected", False) or has_flood_alerts
change_line = "⚠️ NEW ALERTS DETECTED\n" if change_detected else ""
# Build river status section
river_section = ""
if river_data and river_data.get("rivers"):
river_lines = ["🌊 RIVER MONITORING (RiverNet.lk)"]
for river in river_data.get("rivers", [])[:6]:
name = river.get("name", "Unknown")
status = river.get("status", "unknown")
region = river.get("region", "")
status_emoji = {
"danger": "🔴",
"warning": "🟠",
"rising": "🟡",
"normal": "🟢",
"unknown": "⚪",
"error": "❌",
}.get(status, "⚪")
river_lines.append(
f" {status_emoji} {name} ({region}): {status.upper()}"
)
river_section = "\n".join(river_lines) + "\n"
bulletin = f"""🇱🇰 COMPREHENSIVE METEOROLOGICAL INTELLIGENCE FEED
{datetime.utcnow().strftime("%d %b %Y • %H:%M UTC")}
{change_line}
📊 EXECUTIVE SUMMARY (AI-Generated)
{llm_summary}
{river_section}
📈 DATA COLLECTION STATS
• Official Sources: {official_count} items
• National Social Media: {national_count} items
• Climate Alerts: {alert_count} items
• Active Districts: {active_districts}
• Rivers Monitored: {rivers_monitored} (Status: {river_status.upper()})
🔍 COVERAGE
Districts monitored: {', '.join([d.title() for d in self.key_districts])}
Cities: {', '.join(self.key_cities)}
🌐 STRUCTURED DATA AVAILABLE
• "sri lanka weather": Combined national & official intelligence
• "alerts": Critical weather and disaster alerts
• "rivers": Real-time river level monitoring
• District-level: {', '.join([d.title() for d in district_feeds if district_feeds.get(d)])}
Source: Multi-platform aggregation (DMC, MetDept, RiverNet, Twitter, Facebook, LinkedIn, Instagram, Reddit)
"""
# Create list for per-district domain_insights (FRONTEND COMPATIBLE)
domain_insights = []
timestamp = datetime.utcnow().isoformat()
# 1. Create insights from RiverNet data (NEW - HIGH PRIORITY)
if river_data and river_data.get("rivers"):
for river in river_data.get("rivers", []):
status = river.get("status", "unknown")
if status in ["danger", "warning", "rising"]:
severity = (
"high"
if status == "danger"
else ("medium" if status == "warning" else "low")
)
river_name = river.get("name", "Unknown River")
region = river.get("region", "")
water_level = river.get("water_level", {})
level_str = (
f" at {water_level.get('value', 'N/A')}{water_level.get('unit', 'm')}"
if water_level
else ""
)
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "meteorological",
"category": "flood_monitoring",
"summary": f"🌊 {river_name} ({region}): {status.upper()}{level_str}",
"severity": severity,
"impact_type": "risk",
"source": "rivernet.lk",
"river_name": river_name,
"river_status": status,
"water_level": water_level,
"timestamp": timestamp,
}
)
# Add overall river status insight
if river_summary.get("has_alerts"):
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "meteorological",
"category": "flood_alert",
"summary": f"⚠️ FLOOD MONITORING ALERT: {rivers_monitored} rivers monitored, overall status: {river_status.upper()}",
"severity": "high" if river_status == "danger" else "medium",
"impact_type": "risk",
"source": "rivernet.lk",
"river_data": river_data,
"timestamp": timestamp,
}
)
# 2. Create insights from DMC alerts (high severity)
alert_data = structured_feeds.get("alerts", [])
for alert in alert_data[:10]:
alert_text = alert.get("text", "") or alert.get("title", "")
if not alert_text:
continue
detected_district = "Sri Lanka"
for district in self.districts:
if district.lower() in alert_text.lower():
detected_district = district.title()
break
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "meteorological",
"summary": f"{detected_district}: {alert_text[:200]}",
"severity": "high" if change_detected else "medium",
"impact_type": "risk",
"timestamp": timestamp,
}
)
# 3. Create per-district weather insights
for district, posts in district_feeds.items():
if not posts:
continue
for post in posts[:3]:
post_text = post.get("text", "") or post.get("title", "")
if not post_text or len(post_text) < 10:
continue
severity = "low"
if any(
kw in post_text.lower()
for kw in [
"flood",
"cyclone",
"storm",
"warning",
"alert",
"danger",
]
):
severity = "high"
elif any(kw in post_text.lower() for kw in ["rain", "wind", "thunder"]):
severity = "medium"
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "meteorological",
"summary": f"{district.title()}: {post_text[:200]}",
"severity": severity,
"impact_type": "risk" if severity != "low" else "opportunity",
"timestamp": timestamp,
}
)
# 4. Create national weather insights
national_data = structured_feeds.get("sri lanka weather", [])
for post in national_data[:5]:
post_text = post.get("text", "") or post.get("title", "")
if not post_text or len(post_text) < 10:
continue
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "meteorological",
"summary": f"Sri Lanka Weather: {post_text[:200]}",
"severity": "medium",
"impact_type": "risk",
"timestamp": timestamp,
}
)
# 5. Add executive summary insight
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"structured_data": structured_feeds,
"river_data": river_data, # NEW: Include river data
"domain": "meteorological",
"summary": f"Sri Lanka Meteorological Summary: {llm_summary[:300]}",
"severity": "high" if change_detected else "medium",
"impact_type": "risk",
}
)
print(
f" ✓ Created {len(domain_insights)} domain insights (including river monitoring)"
)
return {
"final_feed": bulletin,
"feed_history": [bulletin],
"domain_insights": domain_insights,
"river_data": river_data, # NEW: Pass through for frontend
}
# ============================================
# MODULE 4: FEED AGGREGATOR & STORAGE
# ============================================
def aggregate_and_store_feeds(
self, state: MeteorologicalAgentState
) -> Dict[str, Any]:
"""
Module 4: Aggregate, deduplicate, and store feeds
- Check uniqueness using Neo4j (URL + content hash)
- Store unique posts in Neo4j
- Store unique posts in ChromaDB for RAG
- Append to CSV dataset for ML training
"""
print("[MODULE 4] Aggregating and Storing Feeds")
from src.utils.db_manager import (
Neo4jManager,
ChromaDBManager,
extract_post_data,
)
import csv
import os
# Initialize database managers
neo4j_manager = Neo4jManager()
chroma_manager = ChromaDBManager()
# Get all worker results from state
all_worker_results = state.get("worker_results", [])
# Statistics
total_posts = 0
unique_posts = 0
duplicate_posts = 0
stored_neo4j = 0
stored_chroma = 0
stored_csv = 0
# Setup CSV dataset
dataset_dir = os.getenv("DATASET_PATH", "./datasets/weather_feeds")
os.makedirs(dataset_dir, exist_ok=True)
csv_filename = f"weather_feeds_{datetime.now().strftime('%Y%m')}.csv"
csv_path = os.path.join(dataset_dir, csv_filename)
# CSV headers
csv_headers = [
"post_id",
"timestamp",
"platform",
"category",
"district",
"poster",
"post_url",
"title",
"text",
"content_hash",
"engagement_score",
"engagement_likes",
"engagement_shares",
"engagement_comments",
"source_tool",
]
# Check if CSV exists to determine if we need to write headers
file_exists = os.path.exists(csv_path)
try:
# Open CSV file in append mode
with open(csv_path, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_headers)
# Write headers if new file
if not file_exists:
writer.writeheader()
print(f" ✓ Created new CSV dataset: {csv_path}")
else:
print(f" ✓ Appending to existing CSV: {csv_path}")
# Process each worker result
for worker_result in all_worker_results:
category = worker_result.get("category", "unknown")
platform = worker_result.get("platform", "") or worker_result.get(
"subcategory", ""
)
source_tool = worker_result.get("source_tool", "")
district = worker_result.get("district", "")
# Parse raw content
raw_content = worker_result.get("raw_content", "")
if not raw_content:
continue
try:
# Try to parse JSON content
if isinstance(raw_content, str):
data = json.loads(raw_content)
else:
data = raw_content
# Handle different data structures
posts = []
if isinstance(data, list):
posts = data
elif isinstance(data, dict):
# Check for common result keys
posts = (
data.get("results")
or data.get("data")
or data.get("posts")
or data.get("items")
or []
)
# If still empty, treat the dict itself as a post
if not posts and (
data.get("title")
or data.get("text")
or data.get("forecast")
):
posts = [data]
# Process each post
for raw_post in posts:
total_posts += 1
# Skip if error object
if isinstance(raw_post, dict) and "error" in raw_post:
continue
# Extract normalized post data
post_data = extract_post_data(
raw_post=raw_post,
category=category,
platform=platform or "unknown",
source_tool=source_tool,
)
if not post_data:
continue
# Override district if from worker result
if district:
post_data["district"] = district
# Check uniqueness with Neo4j
is_dup = neo4j_manager.is_duplicate(
post_url=post_data["post_url"],
content_hash=post_data["content_hash"],
)
if is_dup:
duplicate_posts += 1
continue
# Unique post - store it
unique_posts += 1
# Store in Neo4j
if neo4j_manager.store_post(post_data):
stored_neo4j += 1
# Store in ChromaDB
if chroma_manager.add_document(post_data):
stored_chroma += 1
# Store in CSV
try:
csv_row = {
"post_id": post_data["post_id"],
"timestamp": post_data["timestamp"],
"platform": post_data["platform"],
"category": post_data["category"],
"district": post_data["district"],
"poster": post_data["poster"],
"post_url": post_data["post_url"],
"title": post_data["title"],
"text": post_data["text"],
"content_hash": post_data["content_hash"],
"engagement_score": post_data["engagement"].get(
"score", 0
),
"engagement_likes": post_data["engagement"].get(
"likes", 0
),
"engagement_shares": post_data["engagement"].get(
"shares", 0
),
"engagement_comments": post_data["engagement"].get(
"comments", 0
),
"source_tool": post_data["source_tool"],
}
writer.writerow(csv_row)
stored_csv += 1
except Exception as e:
print(f" ⚠️ CSV write error: {e}")
except Exception as e:
print(f" ⚠️ Error processing worker result: {e}")
continue
except Exception as e:
print(f" ⚠️ CSV file error: {e}")
# Close database connections
neo4j_manager.close()
# Print statistics
print("\n 📊 AGGREGATION STATISTICS")
print(f" Total Posts Processed: {total_posts}")
print(f" Unique Posts: {unique_posts}")
print(f" Duplicate Posts: {duplicate_posts}")
print(f" Stored in Neo4j: {stored_neo4j}")
print(f" Stored in ChromaDB: {stored_chroma}")
print(f" Stored in CSV: {stored_csv}")
print(f" Dataset Path: {csv_path}")
# Get database counts
neo4j_total = neo4j_manager.get_post_count() if neo4j_manager.driver else 0
chroma_total = (
chroma_manager.get_document_count() if chroma_manager.collection else 0
)
print("\n 💾 DATABASE TOTALS")
print(f" Neo4j Total Posts: {neo4j_total}")
print(f" ChromaDB Total Docs: {chroma_total}")
return {
"aggregator_stats": {
"total_processed": total_posts,
"unique_posts": unique_posts,
"duplicate_posts": duplicate_posts,
"stored_neo4j": stored_neo4j,
"stored_chroma": stored_chroma,
"stored_csv": stored_csv,
"neo4j_total": neo4j_total,
"chroma_total": chroma_total,
},
"dataset_path": csv_path,
}
|