File size: 36,707 Bytes
b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 765b37c b4856f1 765b37c 752f5cc b4856f1 752f5cc 765b37c 752f5cc 765b37c b4856f1 752f5cc b4856f1 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c b4856f1 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 765b37c 752f5cc b4856f1 752f5cc b4856f1 765b37c b4856f1 752f5cc b4856f1 765b37c b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 765b37c b4856f1 752f5cc b4856f1 752f5cc 765b37c b4856f1 752f5cc 765b37c 752f5cc 765b37c 752f5cc 765b37c b4856f1 765b37c 752f5cc 765b37c 752f5cc 765b37c 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 16ec2cf b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
"""
src/nodes/intelligenceAgentNode.py
MODULAR - Intelligence Agent Node with Subgraph Architecture
Three modules: Profile Monitoring, Competitive Intelligence, Feed Generation
Updated: Uses Tool Factory pattern for parallel execution safety.
Each agent instance gets its own private set of tools.
Updated: Supports user-defined keywords and profiles from config file.
"""
import json
import uuid
import csv
import os
import logging
from typing import List, Dict, Any
from datetime import datetime
from src.states.intelligenceAgentState import IntelligenceAgentState
from src.utils.tool_factory import create_tool_set
from src.llms.groqllm import GroqLLM
from src.utils.db_manager import (
Neo4jManager,
ChromaDBManager,
extract_post_data,
)
logger = logging.getLogger("Roger.intelligence")
class IntelligenceAgentNode:
"""
Modular Intelligence Agent - Three independent collection modules.
Module 1: Profile Monitoring (Twitter, Facebook, LinkedIn, Instagram)
Module 2: Competitive Intelligence (Competitor mentions, Product reviews, Market analysis)
Module 3: Feed Generation (Categorize, Summarize, Format)
Thread Safety:
Each IntelligenceAgentNode instance creates its own private ToolSet,
enabling safe parallel execution with other agents.
User Config:
Loads user-defined profiles and keywords from src/config/intel_config.json
"""
def __init__(self, llm=None):
"""Initialize with Groq LLM and private tool set"""
# Create PRIVATE tool instances for this agent
# This enables parallel execution without shared state conflicts
self.tools = create_tool_set()
if llm is None:
groq = GroqLLM()
self.llm = groq.get_llm()
else:
self.llm = llm
# DEFAULT Competitor profiles to monitor
self.competitor_profiles = {
"twitter": ["DialogLK", "SLTMobitel", "HutchSriLanka"],
"facebook": ["DialogAxiata", "SLTMobitel"],
"linkedin": ["dialog-axiata", "slt-mobitel"],
}
# DEFAULT Products to track
self.product_watchlist = ["Dialog 5G", "SLT Fiber", "Mobitel Data"]
# Competitor categories
self.local_competitors = ["Dialog", "SLT", "Mobitel", "Hutch"]
self.global_competitors = ["Apple", "Samsung", "Google", "Microsoft"]
# User-defined keywords (loaded from config)
self.user_keywords: List[str] = []
# Load and merge user-defined config
self._load_user_config()
def _load_user_config(self):
"""
Load user-defined profiles and keywords from config file.
Merges with default values - user config ADDS to defaults, doesn't replace.
"""
config_path = os.path.join(
os.path.dirname(__file__), "..", "config", "intel_config.json"
)
try:
if os.path.exists(config_path):
with open(config_path, "r", encoding="utf-8") as f:
user_config = json.load(f)
# Merge user profiles with defaults (avoid duplicates)
for platform, profiles in user_config.get("user_profiles", {}).items():
if platform in self.competitor_profiles:
for profile in profiles:
if profile not in self.competitor_profiles[platform]:
self.competitor_profiles[platform].append(profile)
else:
self.competitor_profiles[platform] = profiles
# Merge user products with defaults
for product in user_config.get("user_products", []):
if product not in self.product_watchlist:
self.product_watchlist.append(product)
# Load user keywords
self.user_keywords = user_config.get("user_keywords", [])
total_profiles = sum(
len(v) for v in user_config.get("user_profiles", {}).values()
)
logger.info(
f"[IntelAgent] ✓ Loaded user config: {len(self.user_keywords)} keywords, {total_profiles} profiles, {len(user_config.get('user_products', []))} products"
)
else:
logger.info(
f"[IntelAgent] No user config found at {config_path}, using defaults"
)
except Exception as e:
logger.warning(f"[IntelAgent] Could not load user config: {e}")
# ============================================
# MODULE 1: PROFILE MONITORING
# ============================================
def collect_profile_activity(self, state: IntelligenceAgentState) -> Dict[str, Any]:
"""
Module 1: Monitor specific competitor profiles
Uses profile-based scrapers to track competitor social media
"""
print("[MODULE 1] Profile Monitoring")
profile_results = []
# Twitter Profiles
try:
twitter_profile_tool = self.tools.get("scrape_twitter_profile")
if twitter_profile_tool:
for username in self.competitor_profiles.get("twitter", []):
try:
data = twitter_profile_tool.invoke(
{"username": username, "max_items": 10}
)
profile_results.append(
{
"source_tool": "scrape_twitter_profile",
"raw_content": str(data),
"category": "profile_monitoring",
"subcategory": "twitter",
"profile": username,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Scraped Twitter @{username}")
except Exception as e:
print(f" ⚠️ Twitter @{username} error: {e}")
except Exception as e:
print(f" ⚠️ Twitter profiles error: {e}")
# Facebook Profiles
try:
fb_profile_tool = self.tools.get("scrape_facebook_profile")
if fb_profile_tool:
for page_name in self.competitor_profiles.get("facebook", []):
try:
url = f"https://www.facebook.com/{page_name}"
data = fb_profile_tool.invoke(
{"profile_url": url, "max_items": 10}
)
profile_results.append(
{
"source_tool": "scrape_facebook_profile",
"raw_content": str(data),
"category": "profile_monitoring",
"subcategory": "facebook",
"profile": page_name,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Scraped Facebook {page_name}")
except Exception as e:
print(f" ⚠️ Facebook {page_name} error: {e}")
except Exception as e:
print(f" ⚠️ Facebook profiles error: {e}")
# LinkedIn Profiles
try:
linkedin_profile_tool = self.tools.get("scrape_linkedin_profile")
if linkedin_profile_tool:
for company in self.competitor_profiles.get("linkedin", []):
try:
data = linkedin_profile_tool.invoke(
{"company_or_username": company, "max_items": 10}
)
profile_results.append(
{
"source_tool": "scrape_linkedin_profile",
"raw_content": str(data),
"category": "profile_monitoring",
"subcategory": "linkedin",
"profile": company,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Scraped LinkedIn {company}")
except Exception as e:
print(f" ⚠️ LinkedIn {company} error: {e}")
except Exception as e:
print(f" ⚠️ LinkedIn profiles error: {e}")
return {
"worker_results": profile_results,
"latest_worker_results": profile_results,
}
# ============================================
# MODULE 2: COMPETITIVE INTELLIGENCE COLLECTION
# ============================================
def collect_competitor_mentions(
self, state: IntelligenceAgentState
) -> Dict[str, Any]:
"""
Collect competitor mentions from social media
"""
print("[MODULE 2A] Competitor Mentions")
competitor_results = []
# Twitter competitor tracking
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
for competitor in self.local_competitors[:3]:
try:
data = twitter_tool.invoke(
{"query": competitor, "max_items": 10}
)
competitor_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(data),
"category": "competitor_mention",
"subcategory": "twitter",
"entity": competitor,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Tracked {competitor} on Twitter")
except Exception as e:
print(f" ⚠️ {competitor} error: {e}")
except Exception as e:
print(f" ⚠️ Twitter tracking error: {e}")
# Reddit competitor discussions
try:
reddit_tool = self.tools.get("scrape_reddit")
if reddit_tool:
for competitor in self.local_competitors[:2]:
try:
data = reddit_tool.invoke(
{
"keywords": [competitor, f"{competitor} sri lanka"],
"limit": 10,
}
)
competitor_results.append(
{
"source_tool": "scrape_reddit",
"raw_content": str(data),
"category": "competitor_mention",
"subcategory": "reddit",
"entity": competitor,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Tracked {competitor} on Reddit")
except Exception as e:
print(f" ⚠️ Reddit {competitor} error: {e}")
except Exception as e:
print(f" ⚠️ Reddit tracking error: {e}")
return {
"worker_results": competitor_results,
"latest_worker_results": competitor_results,
}
def collect_product_reviews(self, state: IntelligenceAgentState) -> Dict[str, Any]:
"""
Collect product reviews and sentiment
"""
print("[MODULE 2B] Product Reviews")
review_results = []
try:
review_tool = self.tools.get("scrape_product_reviews")
if review_tool:
for product in self.product_watchlist:
try:
data = review_tool.invoke(
{
"product_keyword": product,
"platforms": ["reddit", "twitter"],
"max_items": 10,
}
)
review_results.append(
{
"source_tool": "scrape_product_reviews",
"raw_content": str(data),
"category": "product_review",
"subcategory": "multi_platform",
"product": product,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Collected reviews for {product}")
except Exception as e:
print(f" ⚠️ {product} error: {e}")
except Exception as e:
print(f" ⚠️ Product review error: {e}")
return {
"worker_results": review_results,
"latest_worker_results": review_results,
}
def collect_market_intelligence(
self, state: IntelligenceAgentState
) -> Dict[str, Any]:
"""
Collect broader market intelligence
"""
print("[MODULE 2C] Market Intelligence")
market_results = []
# Industry news and trends
try:
twitter_tool = self.tools.get("scrape_twitter")
if twitter_tool:
for keyword in ["telecom sri lanka", "5G sri lanka", "fiber broadband"]:
try:
data = twitter_tool.invoke({"query": keyword, "max_items": 10})
market_results.append(
{
"source_tool": "scrape_twitter",
"raw_content": str(data),
"category": "market_intelligence",
"subcategory": "industry_trends",
"keyword": keyword,
"timestamp": datetime.utcnow().isoformat(),
}
)
print(f" ✓ Tracked '{keyword}'")
except Exception as e:
print(f" ⚠️ '{keyword}' error: {e}")
except Exception as e:
print(f" ⚠️ Market intelligence error: {e}")
return {
"worker_results": market_results,
"latest_worker_results": market_results,
}
# ============================================
# MODULE 3: FEED GENERATION
# ============================================
def categorize_intelligence(self, state: IntelligenceAgentState) -> Dict[str, Any]:
"""
Categorize collected intelligence by competitor, product, geography
"""
print("[MODULE 3A] Categorizing Intelligence")
all_results = state.get("worker_results", [])
# Initialize category buckets
profile_feeds = {}
competitor_feeds = {}
product_feeds = {}
local_intel = []
global_intel = []
for result in all_results:
category = result.get("category", "")
# Categorize by type
if category == "profile_monitoring":
profile = result.get("profile", "unknown")
if profile not in profile_feeds:
profile_feeds[profile] = []
profile_feeds[profile].append(result)
elif category == "competitor_mention":
entity = result.get("entity", "unknown")
if entity not in competitor_feeds:
competitor_feeds[entity] = []
competitor_feeds[entity].append(result)
# Local vs Global classification
if entity in self.local_competitors:
local_intel.append(result)
elif entity in self.global_competitors:
global_intel.append(result)
elif category == "product_review":
product = result.get("product", "unknown")
if product not in product_feeds:
product_feeds[product] = []
product_feeds[product].append(result)
print(f" ✓ Categorized {len(profile_feeds)} profiles")
print(f" ✓ Categorized {len(competitor_feeds)} competitors")
print(f" ✓ Categorized {len(product_feeds)} products")
return {
"profile_feeds": profile_feeds,
"competitor_feeds": competitor_feeds,
"product_review_feeds": product_feeds,
"local_intel": local_intel,
"global_intel": global_intel,
}
def generate_llm_summary(self, state: IntelligenceAgentState) -> Dict[str, Any]:
"""
Generate competitive intelligence summary AND structured insights using LLM
"""
print("[MODULE 3B] Generating LLM Summary + Competitive Insights")
all_results = state.get("worker_results", [])
profile_feeds = state.get("profile_feeds", {})
competitor_feeds = state.get("competitor_feeds", {})
product_feeds = state.get("product_review_feeds", {})
llm_summary = "Competitive intelligence summary unavailable."
llm_insights = []
# Prepare summary data
summary_data = {
"total_results": len(all_results),
"profiles_monitored": list(profile_feeds.keys()),
"competitors_tracked": list(competitor_feeds.keys()),
"products_analyzed": list(product_feeds.keys()),
"local_competitors": len(state.get("local_intel", [])),
"global_competitors": len(state.get("global_intel", [])),
}
# Collect sample data for LLM analysis
sample_posts = []
for profile, posts in profile_feeds.items():
if isinstance(posts, list):
for p in posts[:2]:
text = (
p.get("text", "")
or p.get("title", "")
or p.get("raw_content", "")[:200]
)
if text:
sample_posts.append(f"[PROFILE: {profile}] {text[:150]}")
for competitor, posts in competitor_feeds.items():
if isinstance(posts, list):
for p in posts[:2]:
text = (
p.get("text", "")
or p.get("title", "")
or p.get("raw_content", "")[:200]
)
if text:
sample_posts.append(f"[COMPETITOR: {competitor}] {text[:150]}")
posts_text = (
"\n".join(sample_posts[:10])
if sample_posts
else "No detailed data available"
)
prompt = f"""Analyze this competitive intelligence data and generate:
1. A strategic 3-sentence executive summary
2. Up to 5 unique business intelligence insights
Data Overview:
- Total intelligence: {summary_data['total_results']} items
- Competitors tracked: {', '.join(summary_data['competitors_tracked']) or 'None'}
- Products analyzed: {', '.join(summary_data['products_analyzed']) or 'None'}
Sample Data:
{posts_text}
Respond in this exact JSON format:
{{
"executive_summary": "Strategic 3-sentence summary of competitive landscape",
"insights": [
{{"summary": "Unique competitive insight #1", "severity": "low/medium/high", "impact_type": "risk/opportunity"}},
{{"summary": "Unique competitive insight #2", "severity": "low/medium/high", "impact_type": "risk/opportunity"}}
]
}}
Rules:
- Generate actionable business intelligence, not just data descriptions
- Identify competitive threats as "risk", business opportunities as "opportunity"
- Severity: high=urgent action needed, medium=monitor closely, low=informational
JSON only:"""
try:
response = self.llm.invoke(prompt)
content = (
response.content if hasattr(response, "content") else str(response)
)
# Parse JSON response
import re
content = content.strip()
if content.startswith("```"):
content = re.sub(r"^```\w*\n?", "", content)
content = re.sub(r"\n?```$", "", content)
result = json.loads(content)
llm_summary = result.get("executive_summary", llm_summary)
llm_insights = result.get("insights", [])
print(f" ✓ LLM generated {len(llm_insights)} competitive insights")
except json.JSONDecodeError as e:
print(f" ⚠️ JSON parse error: {e}")
# Fallback to simple summary
try:
fallback_prompt = f"Summarize this competitive intelligence in 3 sentences:\n{posts_text[:1500]}"
response = self.llm.invoke(fallback_prompt)
llm_summary = (
response.content if hasattr(response, "content") else str(response)
)
except Exception as fallback_error:
print(f" ⚠️ LLM fallback also failed: {fallback_error}")
except Exception as e:
print(f" ⚠️ LLM error: {e}")
return {
"llm_summary": llm_summary,
"llm_insights": llm_insights,
"structured_output": summary_data,
}
def format_final_output(self, state: IntelligenceAgentState) -> Dict[str, Any]:
"""
Module 3C: Format final competitive intelligence feed with LLM-enhanced insights
"""
print("[MODULE 3C] Formatting Final Output")
profile_feeds = state.get("profile_feeds", {})
competitor_feeds = state.get("competitor_feeds", {})
product_feeds = state.get("product_review_feeds", {})
llm_summary = state.get("llm_summary", "No summary available")
llm_insights = state.get("llm_insights", []) # NEW: Get LLM-generated insights
local_intel = state.get("local_intel", [])
global_intel = state.get("global_intel", [])
profile_count = len(profile_feeds)
competitor_count = len(competitor_feeds)
product_count = len(product_feeds)
total_results = len(state.get("worker_results", []))
bulletin = f"""📊 COMPREHENSIVE COMPETITIVE INTELLIGENCE FEED
{datetime.utcnow().strftime("%d %b %Y • %H:%M UTC")}
🎯 EXECUTIVE SUMMARY (AI-Generated)
{llm_summary}
📈 DATA COLLECTION STATS
• Profile Monitoring: {profile_count} profiles tracked
• Competitor Mentions: {competitor_count} competitors analyzed
• Product Reviews: {product_count} products monitored
• Total Intelligence: {total_results} items
🔍 COMPETITIVE LANDSCAPE
• Local Market: {len(local_intel)} data points
• Global Market: {len(global_intel)} data points
🌐 STRUCTURED DATA AVAILABLE
• Profile Activity: {', '.join([p for p in profile_feeds.keys()][:5])}
• Competitor Tracking: {', '.join([c for c in competitor_feeds.keys()][:5])}
• Product Analysis: {', '.join([p for p in product_feeds.keys()][:3])}
Source: Multi-platform competitive intelligence (Twitter, Facebook, LinkedIn, Instagram, Reddit)
"""
# Create integration output with structured data
structured_feeds = {
"profiles": profile_feeds,
"competitors": competitor_feeds,
"products": product_feeds,
"local_intel": local_intel,
"global_intel": global_intel,
}
# Create list for domain_insights (FRONTEND COMPATIBLE)
domain_insights = []
timestamp = datetime.utcnow().isoformat()
# PRIORITY 1: Add LLM-generated unique insights (curated and actionable)
for insight in llm_insights:
if isinstance(insight, dict) and insight.get("summary"):
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "intelligence",
"summary": f"🎯 {insight.get('summary', '')}", # Mark as AI-analyzed
"severity": insight.get("severity", "medium"),
"impact_type": insight.get("impact_type", "risk"),
"timestamp": timestamp,
"is_llm_generated": True,
}
)
print(f" ✓ Added {len(llm_insights)} LLM-generated competitive insights")
# PRIORITY 2: Add raw data only as fallback if LLM didn't generate enough
if len(domain_insights) < 5:
# Add competitor insights as fallback
for competitor, posts in competitor_feeds.items():
if not isinstance(posts, list):
continue
for post in posts[:3]:
post_text = post.get("text", "") or post.get("title", "")
if not post_text or len(post_text) < 20:
continue
severity = (
"high"
if any(
kw in post_text.lower()
for kw in ["launch", "expansion", "acquisition"]
)
else "medium"
)
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"domain": "intelligence",
"summary": f"Competitor ({competitor}): {post_text[:200]}",
"severity": severity,
"impact_type": "risk",
"timestamp": timestamp,
"is_llm_generated": False,
}
)
# Add executive summary insight
domain_insights.append(
{
"source_event_id": str(uuid.uuid4()),
"structured_data": structured_feeds,
"domain": "intelligence",
"summary": f"📊 Business Intelligence Summary: {llm_summary[:300]}",
"severity": "medium",
"impact_type": "risk",
"is_llm_generated": True,
}
)
print(f" ✓ Created {len(domain_insights)} total intelligence insights")
return {
"final_feed": bulletin,
"feed_history": [bulletin],
"domain_insights": domain_insights,
}
# ============================================
# MODULE 4: FEED AGGREGATOR (Neo4j + ChromaDB + CSV)
# ============================================
def aggregate_and_store_feeds(
self, state: IntelligenceAgentState
) -> Dict[str, Any]:
"""
Module 4: Aggregate, deduplicate, and store feeds
- Check uniqueness using Neo4j (URL + content hash)
- Store unique posts in Neo4j
- Store unique posts in ChromaDB for RAG
- Append to CSV dataset for ML training
"""
print("[MODULE 4] Aggregating and Storing Feeds")
# Initialize database managers
neo4j_manager = Neo4jManager()
chroma_manager = ChromaDBManager()
# Get all worker results from state
all_worker_results = state.get("worker_results", [])
# Statistics
total_posts = 0
unique_posts = 0
duplicate_posts = 0
stored_neo4j = 0
stored_chroma = 0
stored_csv = 0
# Setup CSV dataset
dataset_dir = os.getenv("DATASET_PATH", "./datasets/intelligence_feeds")
os.makedirs(dataset_dir, exist_ok=True)
csv_filename = f"intelligence_feeds_{datetime.now().strftime('%Y%m')}.csv"
csv_path = os.path.join(dataset_dir, csv_filename)
# CSV headers
csv_headers = [
"post_id",
"timestamp",
"platform",
"category",
"entity",
"poster",
"post_url",
"title",
"text",
"content_hash",
"engagement_score",
"engagement_likes",
"engagement_shares",
"engagement_comments",
"source_tool",
]
# Check if CSV exists to determine if we need to write headers
file_exists = os.path.exists(csv_path)
try:
# Open CSV file in append mode
with open(csv_path, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_headers)
# Write headers if new file
if not file_exists:
writer.writeheader()
print(f" ✓ Created new CSV dataset: {csv_path}")
else:
print(f" ✓ Appending to existing CSV: {csv_path}")
# Process each worker result
for worker_result in all_worker_results:
category = worker_result.get("category", "unknown")
platform = worker_result.get("platform", "") or worker_result.get(
"subcategory", ""
)
source_tool = worker_result.get("source_tool", "")
entity = (
worker_result.get("entity", "")
or worker_result.get("profile", "")
or worker_result.get("product", "")
)
# Parse raw content
raw_content = worker_result.get("raw_content", "")
if not raw_content:
continue
try:
# Try to parse JSON content
if isinstance(raw_content, str):
data = json.loads(raw_content)
else:
data = raw_content
# Handle different data structures
posts = []
if isinstance(data, list):
posts = data
elif isinstance(data, dict):
# Check for common result keys
posts = (
data.get("results")
or data.get("data")
or data.get("posts")
or data.get("items")
or []
)
# If still empty, treat the dict itself as a post
if not posts and (data.get("title") or data.get("text")):
posts = [data]
# Process each post
for raw_post in posts:
total_posts += 1
# Skip if error object
if isinstance(raw_post, dict) and "error" in raw_post:
continue
# Extract normalized post data
post_data = extract_post_data(
raw_post=raw_post,
category=category,
platform=platform or "unknown",
source_tool=source_tool,
)
if not post_data:
continue
# Override entity if from worker result
if entity and "metadata" in post_data:
post_data["metadata"]["entity"] = entity
# Check uniqueness with Neo4j
is_dup = neo4j_manager.is_duplicate(
post_url=post_data["post_url"],
content_hash=post_data["content_hash"],
)
if is_dup:
duplicate_posts += 1
continue
# Unique post - store it
unique_posts += 1
# Store in Neo4j
if neo4j_manager.store_post(post_data):
stored_neo4j += 1
# Store in ChromaDB
if chroma_manager.add_document(post_data):
stored_chroma += 1
# Store in CSV
try:
csv_row = {
"post_id": post_data["post_id"],
"timestamp": post_data["timestamp"],
"platform": post_data["platform"],
"category": post_data["category"],
"entity": entity,
"poster": post_data["poster"],
"post_url": post_data["post_url"],
"title": post_data["title"],
"text": post_data["text"],
"content_hash": post_data["content_hash"],
"engagement_score": post_data["engagement"].get(
"score", 0
),
"engagement_likes": post_data["engagement"].get(
"likes", 0
),
"engagement_shares": post_data["engagement"].get(
"shares", 0
),
"engagement_comments": post_data["engagement"].get(
"comments", 0
),
"source_tool": post_data["source_tool"],
}
writer.writerow(csv_row)
stored_csv += 1
except Exception as e:
print(f" ⚠️ CSV write error: {e}")
except Exception as e:
print(f" ⚠️ Error processing worker result: {e}")
continue
except Exception as e:
print(f" ⚠️ CSV file error: {e}")
# Close database connections
neo4j_manager.close()
# Print statistics
print("\n 📊 AGGREGATION STATISTICS")
print(f" Total Posts Processed: {total_posts}")
print(f" Unique Posts: {unique_posts}")
print(f" Duplicate Posts: {duplicate_posts}")
print(f" Stored in Neo4j: {stored_neo4j}")
print(f" Stored in ChromaDB: {stored_chroma}")
print(f" Stored in CSV: {stored_csv}")
print(f" Dataset Path: {csv_path}")
# Get database counts
neo4j_total = neo4j_manager.get_post_count() if neo4j_manager.driver else 0
chroma_total = (
chroma_manager.get_document_count() if chroma_manager.collection else 0
)
print("\n 💾 DATABASE TOTALS")
print(f" Neo4j Total Posts: {neo4j_total}")
print(f" ChromaDB Total Docs: {chroma_total}")
return {
"aggregator_stats": {
"total_processed": total_posts,
"unique_posts": unique_posts,
"duplicate_posts": duplicate_posts,
"stored_neo4j": stored_neo4j,
"stored_chroma": stored_chroma,
"stored_csv": stored_csv,
"neo4j_total": neo4j_total,
"chroma_total": chroma_total,
},
"dataset_path": csv_path,
}
|