File size: 10,700 Bytes
b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 16ec2cf b4856f1 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
"""
src/nodes/dataRetrievalAgentNode.py
COMPLETE - Data Retrieval Agent Node Implementation
Handles orchestrator-worker pattern for scraping tasks
Updated: Uses Tool Factory pattern for parallel execution safety.
Each agent instance gets its own private set of tools.
"""
import json
import uuid
from typing import List
from langchain_core.messages import HumanMessage, SystemMessage
from src.states.dataRetrievalAgentState import (
DataRetrievalAgentState,
ScrapingTask,
RawScrapedData,
ClassifiedEvent,
)
from src.utils.tool_factory import create_tool_set
class DataRetrievalAgentNode:
"""
Implements the Data Retrieval Agent workflow:
1. Master Agent - Plans scraping tasks
2. Worker Agent - Executes individual tasks
3. Tool Node - Runs the actual tools
4. Classifier Agent - Categorizes results for domain agents
Thread Safety:
Each DataRetrievalAgentNode instance creates its own private ToolSet,
enabling safe parallel execution with other agents.
"""
def __init__(self, llm):
"""Initialize with LLM and private tool set"""
# Create PRIVATE tool instances for this agent
self.tools = create_tool_set()
self.llm = llm
# =========================================================================
# 1. MASTER AGENT (TASK DELEGATOR)
# =========================================================================
def master_agent_node(self, state: DataRetrievalAgentState):
"""
TASK DELEGATOR MASTER AGENT
Decides which scraping tools to run based on:
- Previously completed tasks (avoid redundancy)
- Current monitoring needs
- Keywords of interest
Returns: List[ScrapingTask]
"""
print("=== [MASTER AGENT] Planning Scraping Tasks ===")
completed_tools = [r.source_tool for r in state.worker_results]
system_prompt = f"""
You are the Master Data Retrieval Agent for Roger - Sri Lanka's situational awareness platform.
AVAILABLE TOOLS: {list(self.tools.as_dict().keys())}
Your job:
1. Decide which tools to run to keep the system updated
2. Avoid re-running tools just executed: {completed_tools}
3. Prioritize a mix of:
- Official sources: scrape_government_gazette, scrape_parliament_minutes, scrape_train_schedule
- Market data: scrape_cse_stock_data, scrape_local_news
- Social media: scrape_reddit, scrape_twitter, scrape_facebook
Focus on Sri Lankan context with keywords like:
- "election", "policy", "budget", "strike", "inflation"
- "fuel", "railway", "protest", "flood", "gazette"
Previously planned: {state.previous_tasks}
Respond with valid JSON array:
[
{{
"tool_name": "<tool_name>",
"parameters": {{"keywords": [...]}},
"priority": "high" | "normal"
}},
...
]
If no tasks needed, return []
"""
parsed_tasks: List[ScrapingTask] = []
try:
response = self.llm.invoke(
[
SystemMessage(content=system_prompt),
HumanMessage(
content="Plan the next scraping wave for Sri Lankan situational awareness."
),
]
)
raw = response.content
suggested = json.loads(raw)
if isinstance(suggested, dict):
suggested = [suggested]
for item in suggested:
try:
task = ScrapingTask(**item)
parsed_tasks.append(task)
except Exception as e:
print(f"[MASTER] Failed to parse task: {e}")
continue
except Exception as e:
print(f"[MASTER] LLM planning failed: {e}, using fallback plan")
# Fallback plan if LLM fails
if not parsed_tasks and not state.previous_tasks:
parsed_tasks = [
ScrapingTask(
tool_name="scrape_local_news",
parameters={"keywords": ["Sri Lanka", "economy", "politics"]},
priority="high",
),
ScrapingTask(
tool_name="scrape_cse_stock_data",
parameters={"symbol": "ASPI"},
priority="high",
),
ScrapingTask(
tool_name="scrape_government_gazette",
parameters={"keywords": ["tax", "import", "regulation"]},
priority="normal",
),
ScrapingTask(
tool_name="scrape_reddit",
parameters={"keywords": ["Sri Lanka"], "limit": 20},
priority="normal",
),
]
print(f"[MASTER] Planned {len(parsed_tasks)} tasks")
return {
"generated_tasks": parsed_tasks,
"previous_tasks": [t.tool_name for t in parsed_tasks],
}
# =========================================================================
# 2. WORKER AGENT
# =========================================================================
def worker_agent_node(self, state: DataRetrievalAgentState):
"""
DATA RETRIEVAL WORKER AGENT
Pops next task from queue and prepares it for ToolNode execution.
This runs in parallel via map() in the graph.
"""
if not state.generated_tasks:
print("[WORKER] No tasks in queue")
return {}
# Pop first task (FIFO)
current_task = state.generated_tasks[0]
remaining = state.generated_tasks[1:]
print(f"[WORKER] Dispatching -> {current_task.tool_name}")
return {"generated_tasks": remaining, "current_task": current_task}
# =========================================================================
# 3. TOOL NODE
# =========================================================================
def tool_node(self, state: DataRetrievalAgentState):
"""
TOOL NODE
Executes the actual scraping tool specified by current_task.
Handles errors gracefully and records results.
"""
current_task = state.current_task
if current_task is None:
print("[TOOL NODE] No active task")
return {}
print(f"[TOOL NODE] Executing -> {current_task.tool_name}")
tool_func = self.tools.get(current_task.tool_name)
if tool_func is None:
output = f"Tool '{current_task.tool_name}' not found in registry"
status = "failed"
else:
try:
# Invoke LangChain tool with parameters
output = tool_func.invoke(current_task.parameters or {})
status = "success"
print("[TOOL NODE] ✓ Success")
except Exception as e:
output = f"Error: {str(e)}"
status = "failed"
print(f"[TOOL NODE] ✗ Failed: {e}")
result = RawScrapedData(
source_tool=current_task.tool_name, raw_content=str(output), status=status
)
return {"current_task": None, "worker_results": [result]}
# =========================================================================
# 4. CLASSIFIER AGENT
# =========================================================================
def classifier_agent_node(self, state: DataRetrievalAgentState):
"""
DATA CLASSIFIER AGENT
Analyzes scraped data and routes it to appropriate domain agents.
Creates ClassifiedEvent objects with summaries and target agents.
"""
if not state.latest_worker_results:
print("[CLASSIFIER] No new results to process")
return {}
print(f"[CLASSIFIER] Processing {len(state.latest_worker_results)} results")
agent_categories = [
"social",
"economical",
"political",
"mobility",
"weather",
"intelligence",
]
system_prompt = """
You are a data classification expert for Roger.
AVAILABLE AGENTS:
- social: Social media sentiment, public discussions
- economical: Stock market, economic indicators, CSE data
- political: Government gazette, parliament, regulations
- mobility: Transportation, train schedules, logistics
- weather: Meteorological data, disaster alerts
- intelligence: Brand monitoring, entity tracking
Task: Analyze the scraped data and:
1. Write a one-sentence summary
2. Choose the most appropriate agent
Respond with JSON:
{
"summary": "<brief summary>",
"target_agent": "<agent_name>"
}
"""
all_classified: List[ClassifiedEvent] = []
for result in state.latest_worker_results:
try:
response = self.llm.invoke(
[
SystemMessage(content=system_prompt),
HumanMessage(
content=f"Source: {result.source_tool}\n\nData:\n{result.raw_content[:2000]}"
),
]
)
result_json = json.loads(response.content)
summary = result_json.get("summary", "No summary")
target = result_json.get("target_agent", "social")
if target not in agent_categories:
target = "social"
except Exception as e:
print(f"[CLASSIFIER] LLM failed: {e}, using rule-based classification")
# Fallback rule-based classification
source = result.source_tool.lower()
if "stock" in source or "cse" in source:
target = "economical"
elif "gazette" in source or "parliament" in source:
target = "political"
elif "train" in source or "schedule" in source:
target = "mobility"
elif any(s in source for s in ["reddit", "twitter", "facebook"]):
target = "social"
else:
target = "social"
summary = (
f"Data from {result.source_tool}: {result.raw_content[:150]}..."
)
classified = ClassifiedEvent(
event_id=str(uuid.uuid4()),
content_summary=summary,
target_agent=target,
confidence_score=0.85,
)
all_classified.append(classified)
print(f"[CLASSIFIER] Classified {len(all_classified)} events")
return {"classified_buffer": all_classified, "latest_worker_results": []}
|