File size: 26,493 Bytes
b4856f1 752f5cc b4856f1 ac649ea 752f5cc ac649ea b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc aa3c874 752f5cc b4856f1 ac649ea 752f5cc b4856f1 752f5cc b4856f1 752f5cc aa3c874 752f5cc aa3c874 b4856f1 752f5cc b4856f1 752f5cc b4856f1 aa3c874 b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc ac649ea 752f5cc ac649ea 752f5cc ac649ea 752f5cc ac649ea 752f5cc ac649ea aa3c874 752f5cc ac649ea 752f5cc ac649ea 752f5cc ac649ea 752f5cc b4856f1 752f5cc 16ec2cf b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc b4856f1 752f5cc 16ec2cf 752f5cc b4856f1 16ec2cf b4856f1 16ec2cf 4dcfed0 16ec2cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
"""
src/nodes/combinedAgentNode.py
COMPLETE IMPLEMENTATION - Orchestration nodes for Roger Mother Graph
Implements: GraphInitiator, FeedAggregator, DataRefresher, DataRefreshRouter
UPDATED: Supports 'Opportunity' tracking and new Scoring Logic
"""
from __future__ import annotations
import uuid
import logging
import time
from datetime import datetime
from typing import Dict, Any, List
# Import storage manager for production-grade persistence
from src.storage.storage_manager import StorageManager
# Import trending detector for velocity metrics
try:
from src.utils.trending_detector import get_trending_detector, record_topic_mention
TRENDING_ENABLED = True
except ImportError:
TRENDING_ENABLED = False
logger = logging.getLogger("combined_node")
logger.setLevel(logging.INFO)
if not logger.handlers:
ch = logging.StreamHandler()
ch.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
logger.addHandler(ch)
class CombinedAgentNode:
"""
Orchestration nodes for the Mother Graph (CombinedAgentState).
Implements the Fan-In logic after domain agents complete:
1. GraphInitiator - Starts each iteration & Clears previous state
2. FeedAggregator - Collects and ranks domain insights (Risks & Opportunities)
3. DataRefresher - Updates risk dashboard
4. DataRefreshRouter - Decides to loop or end
"""
def __init__(self, llm):
self.llm = llm
# Initialize production storage manager
self.storage = StorageManager()
# Track seen summaries for corroboration scoring
self._seen_summaries_count: Dict[str, int] = {}
logger.info(
"[CombinedAgentNode] Initialized with production storage layer + LLM filter"
)
# =========================================================================
# LLM POST FILTER - Quality control and enhancement
# =========================================================================
def _llm_filter_post(self, summary: str, domain: str = "unknown") -> Dict[str, Any]:
"""
LLM-based post filtering and enhancement.
Returns:
Dict with:
- keep: bool (True if post should be displayed)
- enhanced_summary: str (200-word max, cleaned summary)
- severity: str (low/medium/high/critical)
- fake_news_score: float (0.0-1.0, higher = more likely fake)
- region: str (sri_lanka/world)
- confidence_boost: float (0.0-0.3, based on corroboration)
"""
if not summary or len(summary.strip()) < 20:
return {"keep": False, "reason": "too_short"}
# Limit input to prevent token overflow
summary_input = summary[:1500]
filter_prompt = f"""Analyze this news post for quality and classification:
POST: {summary_input}
DOMAIN: {domain}
Respond with JSON only (no markdown, no explanation):
{{
"keep": true/false,
"fake_news_probability": 0.0-1.0,
"severity": "low/medium/high/critical",
"region": "sri_lanka/world",
"enhanced_summary": "Cleaned, concise summary (max 200 words)",
"is_meaningful": true/false
}}
Rules:
1. keep=false if: spam, ads, meaningless text, or fake_news_probability > 0.7
2. severity: critical=emergency/disaster, high=significant impact, medium=notable, low=informational
3. region: "sri_lanka" if about Sri Lanka, otherwise "world"
4. enhanced_summary: Clean, professional, max 200 words. Keep key facts.
5. is_meaningful: false if no actionable intelligence or just social chatter
JSON only:"""
try:
response = self.llm.invoke(filter_prompt)
content = (
response.content if hasattr(response, "content") else str(response)
)
# Parse JSON response
import json
import re
# Clean up response - extract JSON
content = content.strip()
if content.startswith("```"):
content = re.sub(r"^```\w*\n?", "", content)
content = re.sub(r"\n?```$", "", content)
result = json.loads(content)
# Validate required fields
keep = result.get("keep", False) and result.get("is_meaningful", False)
fake_score = float(result.get("fake_news_probability", 0.5))
# Reject high fake news probability
if fake_score > 0.7:
keep = False
# Calculate corroboration boost
confidence_boost = self._calculate_corroboration_boost(summary)
# Limit enhanced summary to 200 words
enhanced = result.get("enhanced_summary", summary)
words = enhanced.split()
if len(words) > 200:
enhanced = " ".join(words[:200])
return {
"keep": keep,
"enhanced_summary": enhanced,
"severity": result.get("severity", "medium"),
"fake_news_score": fake_score,
"region": result.get("region", "sri_lanka"),
"confidence_boost": confidence_boost,
"original_summary": summary,
}
except Exception as e:
logger.warning(f"[LLM_FILTER] Error processing post: {e}")
# Fallback: keep post but with default values
words = summary.split()
truncated = " ".join(words[:200]) if len(words) > 200 else summary
return {
"keep": True,
"enhanced_summary": truncated,
"severity": "medium",
"fake_news_score": 0.3,
"region": (
"sri_lanka"
if any(
kw in summary.lower()
for kw in ["sri lanka", "colombo", "kandy", "galle"]
)
else "world"
),
"confidence_boost": 0.0,
"original_summary": summary,
}
def _calculate_corroboration_boost(self, summary: str) -> float:
"""
Calculate confidence boost based on similar news corroboration.
More sources reporting similar news = higher confidence.
"""
try:
# Check for similar news in ChromaDB
similar = self.storage.chromadb.find_similar(summary, threshold=0.75)
if similar:
# Each corroborating source adds 0.1 confidence, max 0.3
return min(0.3, 0.1)
return 0.0
except Exception:
return 0.0
# =========================================================================
# 1. GRAPH INITIATOR
# =========================================================================
def graph_initiator(self, state: Dict[str, Any]) -> Dict[str, Any]:
"""
Initialization step executed at START in the graph.
Responsibilities:
- Increment run counter
- Timestamp the execution
- CRITICAL: Send "RESET" signal to clear domain_insights from previous loop
Returns:
Dict updating run_count, last_run_ts, and clearing data lists
"""
logger.info("[GraphInitiator] ===== STARTING GRAPH ITERATION =====")
current_run = getattr(state, "run_count", 0)
new_run_count = current_run + 1
logger.info(f"[GraphInitiator] Run count: {new_run_count}")
logger.info(f"[GraphInitiator] Timestamp: {datetime.utcnow().isoformat()}")
return {
"run_count": new_run_count,
"last_run_ts": datetime.utcnow(),
# CRITICAL FIX: Send "RESET" string to trigger the custom reducer
# in CombinedAgentState. This wipes the list clean for the new loop.
"domain_insights": "RESET",
"final_ranked_feed": [],
}
# =========================================================================
# 2. FEED AGGREGATOR AGENT
# =========================================================================
def feed_aggregator_agent(self, state: Dict[str, Any]) -> Dict[str, Any]:
"""
CRITICAL NODE: Aggregates outputs from all domain agents.
This implements the "Fan-In (Reduce Phase)" from your architecture:
- Collects domain_insights from all agents
- Deduplicates similar events
- Ranks by risk_score + severity + impact_type
- Converts to ClassifiedEvent format
Input: domain_insights (List[Dict]) from state
Output: final_ranked_feed (List[Dict])
"""
logger.info("[FeedAggregatorAgent] ===== AGGREGATING DOMAIN INSIGHTS =====")
# Step 1: Gather domain insights
# Note: In the new state model, this will be a List[Dict] gathered from parallel agents
incoming = getattr(state, "domain_insights", [])
# Handle case where incoming might be the "RESET" string (edge case protection)
if isinstance(incoming, str):
incoming = []
if not incoming:
logger.warning("[FeedAggregatorAgent] No domain insights received!")
return {"final_ranked_feed": []}
# Step 2: Flatten nested lists
# Some agents may return [[insight], [insight]] due to reducer logic
flattened: List[Dict[str, Any]] = []
for item in incoming:
if isinstance(item, list):
flattened.extend(item)
else:
flattened.append(item)
logger.info(
f"[FeedAggregatorAgent] Received {len(flattened)} raw insights from domain agents"
)
# Step 3: PRODUCTION DEDUPLICATION - 3-tier pipeline (SQLite → ChromaDB → Accept)
unique: List[Dict[str, Any]] = []
dedup_stats = {"exact_matches": 0, "semantic_matches": 0, "unique_events": 0}
for ins in flattened:
summary = str(ins.get("summary", "")).strip()
if not summary:
continue
# Use storage manager's 3-tier deduplication
is_dup, reason, match_data = self.storage.is_duplicate(summary)
if is_dup:
if reason == "exact_match":
dedup_stats["exact_matches"] += 1
elif reason == "semantic_match":
dedup_stats["semantic_matches"] += 1
# Link similar events in Neo4j knowledge graph
if match_data and "id" in match_data:
event_id = ins.get("source_event_id") or str(uuid.uuid4())
self.storage.link_similar_events(
event_id,
match_data["id"],
match_data.get("similarity", 0.85),
)
continue
# Event is unique - accept it
dedup_stats["unique_events"] += 1
unique.append(ins)
logger.info(
f"[FeedAggregatorAgent] Deduplication complete: "
f"{dedup_stats['unique_events']} unique, "
f"{dedup_stats['exact_matches']} exact dups, "
f"{dedup_stats['semantic_matches']} semantic dups"
)
# Step 4: Rank by risk_score + severity boost + Opportunity Logic
severity_boost_map = {"low": 0.0, "medium": 0.05, "high": 0.15, "critical": 0.3}
def calculate_score(item: Dict[str, Any]) -> float:
"""Calculate composite score for Risks AND Opportunities"""
base = float(item.get("risk_score", 0.0))
severity = str(item.get("severity", "low")).lower()
impact = str(item.get("impact_type", "risk")).lower()
boost = severity_boost_map.get(severity, 0.0)
# Opportunities are also "High Priority" events, so we boost them too
# to make sure they appear at the top of the feed
opp_boost = 0.2 if impact == "opportunity" else 0.0
return base + boost + opp_boost
# Sort descending by score
ranked = sorted(unique, key=calculate_score, reverse=True)
logger.info("[FeedAggregatorAgent] Top 3 events by score:")
for i, ins in enumerate(ranked[:3]):
score = calculate_score(ins)
domain = ins.get("domain", "unknown")
impact = ins.get("impact_type", "risk")
summary_preview = str(ins.get("summary", ""))[:80]
logger.info(
f" {i+1}. [{domain}] ({impact}) Score={score:.3f} | {summary_preview}..."
)
# Step 5: LLM FILTER + Convert to ClassifiedEvent format + Store
# Process each post through LLM for quality control
converted: List[Dict[str, Any]] = []
filtered_count = 0
llm_processed = 0
logger.info(
f"[FeedAggregatorAgent] Processing {len(ranked)} posts through LLM filter..."
)
for ins in ranked:
event_id = ins.get("source_event_id") or str(uuid.uuid4())
original_summary = str(ins.get("summary", ""))
domain = ins.get("domain", "unknown")
original_severity = ins.get("severity", "medium")
impact_type = ins.get("impact_type", "risk")
base_confidence = round(calculate_score(ins), 3)
timestamp = datetime.utcnow().isoformat()
# Run through LLM filter
llm_result = self._llm_filter_post(original_summary, domain)
llm_processed += 1
# Skip if LLM says don't keep
if not llm_result.get("keep", False):
filtered_count += 1
logger.debug(f"[LLM_FILTER] Filtered out: {original_summary[:60]}...")
continue
# Use LLM-enhanced data
summary = llm_result.get("enhanced_summary", original_summary)
severity = llm_result.get("severity", original_severity)
region = llm_result.get("region", "sri_lanka")
fake_score = llm_result.get("fake_news_score", 0.0)
confidence_boost = llm_result.get("confidence_boost", 0.0)
# Final confidence = base + corroboration boost - fake penalty
final_confidence = min(
1.0, max(0.0, base_confidence + confidence_boost - (fake_score * 0.2))
)
# FRONTEND-COMPATIBLE FORMAT
classified = {
"event_id": event_id,
"summary": summary, # Frontend expects 'summary'
"domain": domain, # Frontend expects 'domain'
"confidence": round(
final_confidence, 3
), # Frontend expects 'confidence'
"severity": severity,
"impact_type": impact_type,
"region": region, # NEW: for sidebar filtering
"fake_news_score": fake_score, # NEW: for transparency
"timestamp": timestamp,
}
converted.append(classified)
# Store in all databases (SQLite, ChromaDB, Neo4j)
self.storage.store_event(
event_id=event_id,
summary=summary,
domain=domain,
severity=severity,
impact_type=impact_type,
confidence_score=final_confidence,
timestamp=timestamp,
)
logger.info(
f"[FeedAggregatorAgent] LLM Filter: {llm_processed} processed, {filtered_count} filtered out"
)
logger.info(
f"[FeedAggregatorAgent] ===== PRODUCED {len(converted)} QUALITY EVENTS ====="
)
# NEW: Step 6 - Create categorized feeds for frontend display
categorized = {
"political": [],
"economical": [],
"social": [],
"meteorological": [],
"intelligence": [],
}
for ins in flattened:
domain = ins.get("domain", "unknown")
structured_data = ins.get("structured_data", {})
# Skip if no structured data or unknown domain
if not structured_data or domain not in categorized:
continue
# Extract and add feeds for this domain
domain_feeds = self._extract_feeds(structured_data, domain)
categorized[domain].extend(domain_feeds)
# Log categorized counts
for domain, items in categorized.items():
logger.info(
f"[FeedAggregatorAgent] {domain.title()}: {len(items)} categorized items"
)
return {"final_ranked_feed": converted, "categorized_feeds": categorized}
def _extract_feeds(
self, structured_data: Dict[str, Any], domain: str
) -> List[Dict[str, Any]]:
"""
Helper to extract and flatten feed items from structured_data.
Converts nested structured_data into a flat list of feed items.
"""
extracted = []
for category, items in structured_data.items():
# Handle list items (actual feed data)
if isinstance(items, list):
for item in items:
if isinstance(item, dict):
feed_item = {
**item,
"domain": domain,
"category": category,
"timestamp": item.get(
"timestamp", datetime.utcnow().isoformat()
),
}
extracted.append(feed_item)
# Handle dictionary items (e.g., intelligence profiles/competitors)
elif isinstance(items, dict):
for key, value in items.items():
if isinstance(value, list):
for item in value:
if isinstance(item, dict):
feed_item = {
**item,
"domain": domain,
"category": category,
"subcategory": key,
"timestamp": item.get(
"timestamp", datetime.utcnow().isoformat()
),
}
extracted.append(feed_item)
return extracted
# =========================================================================
# 3. DATA REFRESHER AGENT
# =========================================================================
def data_refresher_agent(self, state: Dict[str, Any]) -> Dict[str, Any]:
"""
Updates risk dashboard snapshot based on final_ranked_feed.
This implements the "Operational Risk Radar" from your report:
- logistics_friction: Route risk from mobility data
- compliance_volatility: Regulatory risk from political data
- market_instability: Volatility from economic data
- opportunity_index: NEW - Growth signals from positive events
Input: final_ranked_feed
Output: risk_dashboard_snapshot
"""
logger.info("[DataRefresherAgent] ===== REFRESHING DASHBOARD =====")
# Get feed from state - handle both dict and object access
if isinstance(state, dict):
feed = state.get("final_ranked_feed", [])
else:
feed = getattr(state, "final_ranked_feed", [])
# Default snapshot structure
snapshot = {
"logistics_friction": 0.0,
"compliance_volatility": 0.0,
"market_instability": 0.0,
"opportunity_index": 0.0,
"avg_confidence": 0.0,
"high_priority_count": 0,
"total_events": 0,
"trending_topics": [],
"spike_alerts": [],
"infrastructure_health": 1.0,
"regulatory_activity": 0.0,
"investment_climate": 0.5,
"last_updated": datetime.utcnow().isoformat(),
}
if not feed:
logger.info("[DataRefresherAgent] Empty feed - returning zero metrics")
return {"risk_dashboard_snapshot": snapshot}
# Compute aggregate metrics - feed uses 'confidence' field, not 'confidence_score'
confidences = [
float(item.get("confidence", item.get("confidence_score", 0.5)))
for item in feed
]
avg_confidence = sum(confidences) / len(confidences) if confidences else 0.0
high_priority_count = sum(1 for c in confidences if c >= 0.7)
# Domain-specific scoring buckets
domain_risks = {}
opportunity_scores = []
for item in feed:
# Feed uses 'domain' field, not 'target_agent'
domain = item.get("domain", item.get("target_agent", "unknown"))
score = item.get("confidence", item.get("confidence_score", 0.5))
impact = item.get("impact_type", "risk")
# Separate Opportunities from Risks
if impact == "opportunity":
opportunity_scores.append(score)
else:
# Group Risks by Domain
if domain not in domain_risks:
domain_risks[domain] = []
domain_risks[domain].append(score)
# Helper for calculating averages safely
def safe_avg(lst):
return sum(lst) / len(lst) if lst else 0.0
# Calculate domain-specific risk scores
# Mobility -> Logistics Friction
mobility_scores = domain_risks.get("mobility", []) + domain_risks.get(
"social", []
) # Social unrest affects logistics
snapshot["logistics_friction"] = round(safe_avg(mobility_scores), 3)
# Political -> Compliance Volatility
political_scores = domain_risks.get("political", [])
snapshot["compliance_volatility"] = round(safe_avg(political_scores), 3)
# Market/Economic -> Market Instability
market_scores = domain_risks.get("market", []) + domain_risks.get(
"economical", []
)
snapshot["market_instability"] = round(safe_avg(market_scores), 3)
# NEW: Opportunity Index
# Higher score means stronger positive signals
snapshot["opportunity_index"] = round(safe_avg(opportunity_scores), 3)
snapshot["avg_confidence"] = round(avg_confidence, 3)
snapshot["high_priority_count"] = high_priority_count
snapshot["total_events"] = len(feed)
# NEW: Enhanced Operational Indicators
# Infrastructure Health (inverted logistics friction)
snapshot["infrastructure_health"] = round(
max(0, 1.0 - snapshot["logistics_friction"]), 3
)
# Regulatory Activity (sum of political events)
snapshot["regulatory_activity"] = round(len(political_scores) * 0.1, 3)
# Investment Climate (opportunity-weighted)
if opportunity_scores:
snapshot["investment_climate"] = round(
0.5 + safe_avg(opportunity_scores) * 0.5, 3
)
# NEW: Record topics for trending analysis and get current trends
if TRENDING_ENABLED:
try:
detector = get_trending_detector()
# Record topics from feed
for item in feed:
summary = item.get("summary", "")
domain = item.get("domain", item.get("target_agent", "unknown"))
# Extract key topic words (simplified - just use first 3 words)
words = summary.split()[:5]
if words:
topic = " ".join(words).lower()
record_topic_mention(topic, source="roger_feed", domain=domain)
# Get trending topics and spike alerts
snapshot["trending_topics"] = detector.get_trending_topics(limit=5)
snapshot["spike_alerts"] = detector.get_spike_alerts(limit=3)
logger.info(
f"[DataRefresherAgent] Trending: {len(snapshot['trending_topics'])} topics, {len(snapshot['spike_alerts'])} spikes"
)
except Exception as e:
logger.warning(f"[DataRefresherAgent] Trending detection failed: {e}")
snapshot["last_updated"] = datetime.utcnow().isoformat()
logger.info("[DataRefresherAgent] Dashboard Metrics:")
logger.info(f" Logistics Friction: {snapshot['logistics_friction']}")
logger.info(f" Compliance Volatility: {snapshot['compliance_volatility']}")
logger.info(f" Market Instability: {snapshot['market_instability']}")
logger.info(f" Opportunity Index: {snapshot['opportunity_index']}")
logger.info(
f" High Priority Events: {snapshot['high_priority_count']}/{snapshot['total_events']}"
)
# PRODUCTION FEATURE: Export to CSV for archival
try:
if feed:
self.storage.export_feed_to_csv(feed)
logger.info(f"[DataRefresherAgent] Exported {len(feed)} events to CSV")
except Exception as e:
logger.error(f"[DataRefresherAgent] CSV export error: {e}")
# Cleanup old cache entries periodically
try:
self.storage.cleanup_old_data()
except Exception as e:
logger.error(f"[DataRefresherAgent] Cleanup error: {e}")
return {"risk_dashboard_snapshot": snapshot}
# =========================================================================
# 4. DATA REFRESH ROUTER
# =========================================================================
def data_refresh_router(self, state: Dict[str, Any]) -> Dict[str, Any]:
"""
Routing decision after dashboard refresh.
UPDATED: Returns END immediately (non-blocking). The 60-second interval
is now managed externally by the caller (main.py run_graph_loop).
This makes the graph execution non-blocking.
Returns:
{"route": "END"} to complete this cycle
"""
logger.info("[DataRefreshRouter] Cycle complete. Returning END (non-blocking).")
# Return END to complete this graph cycle
# The 60-second scheduling is handled by the caller in main.py
return {"route": "END"}
|