File size: 84,943 Bytes
b4856f1 4134ab0 b4856f1 4134ab0 b4856f1 aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c 01d0ae1 aa3c874 01d0ae1 41fbe3c 01d0ae1 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 b4856f1 4134ab0 b4856f1 4134ab0 b4856f1 4134ab0 b4856f1 4134ab0 b4856f1 aa3c874 b4856f1 41fbe3c b4856f1 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 b4856f1 aa3c874 41fbe3c aa3c874 b4856f1 16ec2cf b4856f1 16ec2cf b4856f1 16ec2cf b4856f1 41fbe3c 16ec2cf 41fbe3c 16ec2cf 4134ab0 16ec2cf 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c 98f8694 16ec2cf 98f8694 41fbe3c b4856f1 4134ab0 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 4134ab0 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 4134ab0 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 4134ab0 2473009 b4856f1 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 41fbe3c aa3c874 eb6b502 ff3017c eb6b502 41fbe3c ff3017c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 41fbe3c eb6b502 b4856f1 4134ab0 b4856f1 4134ab0 41fbe3c 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c 4134ab0 b4856f1 4134ab0 41fbe3c 4134ab0 41fbe3c 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c 4134ab0 b4856f1 41fbe3c b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c 4134ab0 41fbe3c 4134ab0 b4856f1 41fbe3c b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c 765b37c 41fbe3c b4856f1 765b37c 41fbe3c 765b37c 41fbe3c 765b37c 41fbe3c 765b37c 41fbe3c 765b37c 41fbe3c 765b37c 41fbe3c b4856f1 765b37c b4856f1 765b37c b4856f1 41fbe3c 4134ab0 b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c 4134ab0 b4856f1 41fbe3c 765b37c b4856f1 41fbe3c b4856f1 765b37c b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 765b37c b4856f1 765b37c 41fbe3c 765b37c 98f8694 41fbe3c 765b37c 41fbe3c 765b37c 41fbe3c 98f8694 765b37c 41fbe3c 98f8694 41fbe3c 765b37c 41fbe3c 98f8694 765b37c 98f8694 765b37c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 01d0ae1 b4856f1 01d0ae1 b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 41fbe3c b4856f1 4134ab0 b4856f1 41fbe3c b4856f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 |
"""
main.py
Production-Ready Real-Time Intelligence Platform Backend
- Uses combinedAgentGraph for multi-agent orchestration
- Threading for concurrent graph execution and WebSocket server
- Database-driven feed updates with polling
- Duplicate prevention
- District-based feed categorization for map display
Updated: Resilient WebSocket handling for long scraping operations (60s+ cycles)
"""
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Dict, Any, List, Set, Optional
import asyncio
import json
from datetime import datetime, timedelta, timezone
import sys
import os
import logging
import threading
import time
import uuid # CRITICAL: Was missing, needed for event_id generation
def utc_now() -> datetime:
"""Return current UTC time (Python 3.12+ compatible)."""
return datetime.now(timezone.utc)
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
from src.graphs.combinedAgentGraph import graph
from src.states.combinedAgentState import CombinedAgentState
from src.storage.storage_manager import StorageManager
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("Roger_api")
# ============================================
# AUTO-TRAINING: Check and train models if missing
# ============================================
def check_and_train_models():
"""
Check if ML models are trained. If not, trigger training in background.
Called on startup to ensure models are available.
"""
from pathlib import Path
import subprocess
PROJECT_ROOT = Path(__file__).parent
# Define model checks: (name, model_path, train_command)
model_checks = [
{
"name": "Anomaly Detection",
"check_paths": [
PROJECT_ROOT / "models" / "anomaly-detection" / "artifacts" / "models",
],
"check_files": ["*.joblib", "*.pkl"],
"train_cmd": [
sys.executable,
str(PROJECT_ROOT / "models" / "anomaly-detection" / "main.py")
]
},
{
"name": "Weather Prediction",
"check_paths": [
PROJECT_ROOT / "models" / "weather-prediction" / "artifacts" / "models",
],
"check_files": ["*.h5", "*.keras"],
"train_cmd": [
sys.executable,
str(PROJECT_ROOT / "models" / "weather-prediction" / "main.py"),
"--mode", "full"
]
},
{
"name": "Currency Prediction",
"check_paths": [
PROJECT_ROOT / "models" / "currency-volatility-prediction"
/ "artifacts" / "models",
],
"check_files": ["*.h5", "*.keras"],
"train_cmd": [
sys.executable,
str(PROJECT_ROOT / "models" / "currency-volatility-prediction"
/ "main.py"),
"--mode", "full"
]
},
{
"name": "Stock Prediction",
"check_paths": [
PROJECT_ROOT / "models" / "stock-price-prediction"
/ "Artifacts",
],
"check_files": ["*.pkl", "*.h5", "*.keras"],
"train_cmd": [
sys.executable,
str(PROJECT_ROOT / "models" / "stock-price-prediction"
/ "main.py")
]
},
]
def has_trained_model(check_paths, check_files):
"""Check if any trained model files exist."""
for path in check_paths:
if path.exists():
for pattern in check_files:
if list(path.glob(pattern)):
return True
# Also check subdirectories
if list(path.glob(f"**/{pattern}")):
return True
return False
def train_in_background(name, cmd):
"""Run training in a background thread."""
def _train():
logger.info(f"[AUTO-TRAIN] Starting {name} training...")
try:
result = subprocess.run(
cmd,
cwd=str(PROJECT_ROOT),
capture_output=True,
text=True,
timeout=1800 # 30 min timeout
)
if result.returncode == 0:
logger.info(f"[AUTO-TRAIN] ✓ {name} training complete!")
else:
logger.warning(f"[AUTO-TRAIN] ⚠ {name} training failed: {result.stderr[:500]}")
except subprocess.TimeoutExpired:
logger.error(f"[AUTO-TRAIN] ✗ {name} training timed out (30 min)")
except Exception as e:
logger.error(f"[AUTO-TRAIN] ✗ {name} training error: {e}")
thread = threading.Thread(target=_train, daemon=True, name=f"train_{name}")
thread.start()
return thread
# Check each model
training_threads = []
for model in model_checks:
if has_trained_model(model["check_paths"], model["check_files"]):
logger.info(f"[MODEL CHECK] ✓ {model['name']} - Model found")
else:
logger.warning(f"[MODEL CHECK] ⚠ {model['name']} - No model found, starting training...")
thread = train_in_background(model["name"], model["train_cmd"])
training_threads.append((model["name"], thread))
if training_threads:
logger.info(f"[AUTO-TRAIN] Started {len(training_threads)} background training jobs")
else:
logger.info("[MODEL CHECK] All models found - no training needed")
return training_threads
# Run model check on module load (startup)
logger.info("=" * 60)
logger.info("[STARTUP] Checking ML models...")
logger.info("=" * 60)
_training_threads = check_and_train_models()
app = FastAPI(title="Roger Intelligence Platform API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global state
current_state: Dict[str, Any] = {
"final_ranked_feed": [],
"risk_dashboard_snapshot": {
"logistics_friction": 0.0,
"compliance_volatility": 0.0,
"market_instability": 0.0,
"opportunity_index": 0.0,
"avg_confidence": 0.0,
"high_priority_count": 0,
"total_events": 0,
"last_updated": utc_now().isoformat()
},
"run_count": 0,
"status": "initializing",
"first_run_complete": False # Track first graph execution
}
# Thread-safe communication
feed_update_queue = asyncio.Queue()
seen_event_ids: Set[str] = set() # Duplicate prevention
# Global event loop reference for cross-thread broadcasting
main_event_loop = None
# Storage manager
storage_manager = StorageManager()
# WebSocket settings - ULTRA-RESILIENT for long scraping operations
# Heavy graph cycles can take 2-3 minutes, so we need high tolerance
HEARTBEAT_INTERVAL = 60.0 # Send ping every 60s (increased from 45s)
HEARTBEAT_TIMEOUT = 45.0 # Wait 45s for pong (increased from 30s)
HEARTBEAT_MISS_THRESHOLD = 5 # Allow 5 misses = ~5 minutes tolerance
SEND_TIMEOUT = 15.0 # Increased for slow networks/heavy load
class ConnectionManager:
"""Manages active WebSocket with heartbeat"""
def __init__(self):
self.active_connections: Dict[WebSocket, Dict[str, Any]] = {}
self._lock = asyncio.Lock()
async def connect(self, websocket: WebSocket):
await websocket.accept()
async with self._lock:
meta = {
"heartbeat_task": asyncio.create_task(self._heartbeat_loop(websocket)),
"last_pong": utc_now(),
"misses": 0
}
self.active_connections[websocket] = meta
logger.info(f"[WebSocket] Connected. Total: {len(self.active_connections)}")
async def disconnect(self, websocket: WebSocket):
async with self._lock:
meta = self.active_connections.pop(websocket, None)
if meta:
task = meta.get("heartbeat_task")
if task and not task.done():
task.cancel()
try:
await task
except asyncio.CancelledError:
pass
try:
await websocket.close()
except Exception:
pass
logger.info(f"[WebSocket] Disconnected. Total: {len(self.active_connections)}")
async def _send_with_timeout(self, websocket: WebSocket, message_json: str):
try:
await asyncio.wait_for(websocket.send_text(message_json), timeout=SEND_TIMEOUT)
return True
except Exception as e:
logger.debug(f"[WebSocket] Send failed: {e}")
return False
async def _heartbeat_loop(self, websocket: WebSocket):
"""Per-connection heartbeat task"""
try:
while True:
await asyncio.sleep(HEARTBEAT_INTERVAL)
if websocket not in self.active_connections:
break
ping_payload = json.dumps({"type": "ping"})
ok = await self._send_with_timeout(websocket, ping_payload)
if not ok:
async with self._lock:
meta = self.active_connections.get(websocket)
if meta is not None:
meta['misses'] += 1
else:
waited = 0.0
sleep_step = 0.5
pong_received = False
while waited < HEARTBEAT_TIMEOUT:
await asyncio.sleep(sleep_step)
waited += sleep_step
async with self._lock:
meta = self.active_connections.get(websocket)
if meta is None:
return
last_pong = meta.get("last_pong")
if last_pong and (utc_now() - last_pong).total_seconds() < (HEARTBEAT_INTERVAL + HEARTBEAT_TIMEOUT):
pong_received = True
meta['misses'] = 0
break
if not pong_received:
async with self._lock:
meta = self.active_connections.get(websocket)
if meta is not None:
meta['misses'] += 1
async with self._lock:
meta = self.active_connections.get(websocket)
if meta is None:
return
if meta.get('misses', 0) >= HEARTBEAT_MISS_THRESHOLD:
logger.warning("[WebSocket] Miss threshold exceeded, disconnecting")
try:
await websocket.close(code=1001)
except Exception:
pass
await self.disconnect(websocket)
return
except asyncio.CancelledError:
return
except Exception as e:
logger.exception(f"[WebSocket] Heartbeat error: {e}")
try:
await self.disconnect(websocket)
except Exception:
pass
async def broadcast(self, message: dict):
"""Broadcast to all connections"""
async with self._lock:
conns = list(self.active_connections.keys())
if not conns:
return
message_json = json.dumps(message, default=str)
dead: List[WebSocket] = []
for conn in conns:
ok = await self._send_with_timeout(conn, message_json)
if not ok:
dead.append(conn)
for conn in dead:
logger.info("[WebSocket] Removing dead connection")
await self.disconnect(conn)
manager = ConnectionManager()
def categorize_feed_by_district(feed: Dict[str, Any]) -> str:
"""
Categorize feed by Sri Lankan district based on summary text.
Returns district name or "National" if not district-specific.
NOTE: This returns the FIRST match. Use get_all_matching_districts() for multi-district feeds.
"""
districts = get_all_matching_districts(feed)
return districts[0] if districts else "National"
def get_all_matching_districts(feed: Dict[str, Any]) -> List[str]:
"""
Get ALL districts mentioned in a feed (direct or via province).
Supports:
- Direct district names (Colombo, Kandy, etc.)
- Province names that map to multiple districts
- Commonly referenced regions
Returns list of all matching district names.
"""
summary = feed.get("summary", "").lower()
# Sri Lankan districts
districts = [
"Colombo", "Gampaha", "Kalutara", "Kandy", "Matale", "Nuwara Eliya",
"Galle", "Matara", "Hambantota", "Jaffna", "Kilinochchi", "Mannar",
"Vavuniya", "Mullaitivu", "Batticaloa", "Ampara", "Trincomalee",
"Kurunegala", "Puttalam", "Anuradhapura", "Polonnaruwa", "Badulla",
"Moneragala", "Ratnapura", "Kegalle"
]
# Province to districts mapping
province_mapping = {
"western province": ["Colombo", "Gampaha", "Kalutara"],
"western": ["Colombo", "Gampaha", "Kalutara"],
"central province": ["Kandy", "Matale", "Nuwara Eliya"],
"central": ["Kandy", "Matale", "Nuwara Eliya"],
"southern province": ["Galle", "Matara", "Hambantota"],
"southern provinces": ["Galle", "Matara", "Hambantota"],
"southern": ["Galle", "Matara", "Hambantota"],
"south": ["Galle", "Matara", "Hambantota"],
"northern province": ["Jaffna", "Kilinochchi", "Mannar", "Vavuniya", "Mullaitivu"],
"northern": ["Jaffna", "Kilinochchi", "Mannar", "Vavuniya", "Mullaitivu"],
"north": ["Jaffna", "Kilinochchi", "Mannar", "Vavuniya", "Mullaitivu"],
"eastern province": ["Batticaloa", "Ampara", "Trincomalee"],
"eastern": ["Batticaloa", "Ampara", "Trincomalee"],
"east": ["Batticaloa", "Ampara", "Trincomalee"],
"north western province": ["Kurunegala", "Puttalam"],
"north western": ["Kurunegala", "Puttalam"],
"north central province": ["Anuradhapura", "Polonnaruwa"],
"north central": ["Anuradhapura", "Polonnaruwa"],
"uva province": ["Badulla", "Moneragala"],
"uva": ["Badulla", "Moneragala"],
"sabaragamuwa province": ["Ratnapura", "Kegalle"],
"sabaragamuwa": ["Ratnapura", "Kegalle"],
}
matched_districts = set()
# Check for province mentions first
for province, province_districts in province_mapping.items():
if province in summary:
matched_districts.update(province_districts)
# Check for direct district mentions
for district in districts:
if district.lower() in summary:
matched_districts.add(district)
return list(matched_districts)
def run_graph_loop():
"""
Graph execution in separate thread.
Runs the combinedAgentGraph every 60 seconds (non-blocking pattern).
UPDATED: Graph now runs single cycles and this loop handles the 60s interval
externally, making the pattern non-blocking and interruptible.
"""
REFRESH_INTERVAL_SECONDS = 60
shutdown_event = threading.Event()
logger.info("="*80)
logger.info("[GRAPH THREAD] Starting Roger combinedAgentGraph loop (60s interval)")
logger.info("="*80)
cycle_count = 0
while not shutdown_event.is_set():
cycle_count += 1
cycle_start = time.time()
logger.info(f"[GRAPH THREAD] Starting cycle #{cycle_count}")
initial_state = CombinedAgentState(
domain_insights=[],
final_ranked_feed=[],
run_count=cycle_count,
max_runs=1, # Single cycle mode
route=None
)
try:
# Run a single graph cycle (non-blocking since router now returns END)
config = {"recursion_limit": 100}
for event in graph.stream(initial_state, config=config):
logger.info(f"[GRAPH] Event nodes: {list(event.keys())}")
for node_name, node_output in event.items():
# Extract feed data
if hasattr(node_output, 'final_ranked_feed'):
feeds = node_output.final_ranked_feed
elif isinstance(node_output, dict):
feeds = node_output.get('final_ranked_feed', [])
else:
continue
if feeds:
logger.info(f"[GRAPH] {node_name} produced {len(feeds)} feeds")
# FIELD_NORMALIZATION: Transform graph format to frontend format
for feed_item in feeds:
if isinstance(feed_item, dict):
event_data = feed_item
else:
event_data = feed_item.__dict__ if hasattr(feed_item, '__dict__') else {}
# Normalize field names: graph uses content_summary/target_agent, frontend expects summary/domain
event_id = event_data.get("event_id", str(uuid.uuid4()))
summary = event_data.get("content_summary") or event_data.get("summary", "")
domain = event_data.get("target_agent") or event_data.get("domain", "unknown")
severity = event_data.get("severity", "medium")
impact_type = event_data.get("impact_type", "risk")
confidence = event_data.get("confidence_score", event_data.get("confidence", 0.5))
timestamp = event_data.get("timestamp", utc_now().isoformat())
# Check for duplicates
is_dup, _, _ = storage_manager.is_duplicate(summary)
if not is_dup:
try:
storage_manager.store_event(
event_id=event_id,
summary=summary,
domain=domain,
severity=severity,
impact_type=impact_type,
confidence_score=confidence
)
logger.info(f"[GRAPH] Stored new feed: {summary[:60]}...")
except Exception as storage_error:
logger.warning(f"[GRAPH] Storage error (continuing): {storage_error}")
# DIRECT_BROADCAST_FIX: Set first_run_complete and broadcast
if not current_state.get('first_run_complete'):
current_state['first_run_complete'] = True
current_state['status'] = 'operational'
logger.info("[GRAPH] FIRST RUN COMPLETE - Broadcasting to frontend!")
# Trigger broadcast from sync thread to async loop
if main_event_loop:
asyncio.run_coroutine_threadsafe(
manager.broadcast(current_state),
main_event_loop
)
except RuntimeError as e:
if "cannot schedule new futures after interpreter shutdown" in str(e):
logger.warning("[GRAPH THREAD] Interpreter shutting down, stopping graph loop gracefully")
break # Exit the loop cleanly
else:
logger.error(f"[GRAPH THREAD] RuntimeError in cycle #{cycle_count}: {e}", exc_info=True)
except Exception as e:
logger.error(f"[GRAPH THREAD] Error in cycle #{cycle_count}: {e}", exc_info=True)
# Calculate time spent in this cycle
cycle_duration = time.time() - cycle_start
logger.info(f"[GRAPH THREAD] Cycle #{cycle_count} completed in {cycle_duration:.1f}s")
# Wait for remaining time to complete 60s interval (interruptible)
wait_time = max(0, REFRESH_INTERVAL_SECONDS - cycle_duration)
if wait_time > 0:
logger.info(f"[GRAPH THREAD] Waiting {wait_time:.1f}s before next cycle...")
# Use Event.wait() for interruptible sleep instead of time.sleep()
shutdown_event.wait(timeout=wait_time)
logger.info("[GRAPH THREAD] Graph loop stopped")
async def database_polling_loop():
"""
Polls database for new feeds and broadcasts via WebSocket.
Runs concurrently with graph thread.
"""
global current_state
last_check = utc_now()
logger.info("[DB_POLLER] Starting database polling loop")
while True:
try:
await asyncio.sleep(2.0) # Poll every 2 seconds
# Get new feeds since last check
new_feeds = storage_manager.get_feeds_since(last_check)
last_check = utc_now()
if new_feeds:
logger.info(f"[DB_POLLER] Found {len(new_feeds)} new feeds")
# Filter duplicates (by event_id)
unique_feeds = []
for feed in new_feeds:
event_id = feed.get("event_id")
if event_id and event_id not in seen_event_ids:
seen_event_ids.add(event_id)
# Add district categorization for map
feed["district"] = categorize_feed_by_district(feed)
unique_feeds.append(feed)
if unique_feeds:
# Update current state
current_state['final_ranked_feed'] = unique_feeds + current_state.get('final_ranked_feed', [])
current_state['final_ranked_feed'] = current_state['final_ranked_feed'][:100] # Keep last 100
current_state['status'] = 'operational'
current_state['last_update'] = utc_now().isoformat()
# Mark first run as complete (frontend loading screen can now hide)
if not current_state.get('first_run_complete'):
current_state['first_run_complete'] = True
logger.info("[DB_POLLER] First graph run complete! Frontend loading screen can now hide.")
# Broadcast to WebSocket clients
await manager.broadcast(current_state)
logger.info(f"[DB_POLLER] Broadcasted {len(unique_feeds)} unique feeds")
except Exception as e:
logger.error(f"[DB_POLLER] Error: {e}")
@app.on_event("startup")
async def startup_event():
global main_event_loop
main_event_loop = asyncio.get_event_loop()
logger.info("[API] Starting Roger API...")
# Start graph execution in separate thread
graph_thread = threading.Thread(target=run_graph_loop, daemon=True)
graph_thread.start()
logger.info("[API] Graph thread started")
# Start database polling loop
asyncio.create_task(database_polling_loop())
logger.info("[API] Database polling started")
@app.get("/")
def read_root():
return {
"service": "Roger Intelligence Platform",
"status": current_state.get("status"),
"version": "2.0.0 (Database-Driven)"
}
@app.get("/api/status")
def get_status():
return {
"status": current_state.get("status"),
"run_count": current_state.get("run_count"),
"last_update": current_state.get("last_update"),
"active_connections": len(manager.active_connections),
"total_events": len(current_state.get("final_ranked_feed", []))
}
@app.get("/api/dashboard")
def get_dashboard():
return current_state.get("risk_dashboard_snapshot", {})
@app.get("/api/feed")
def get_feed():
"""Get current feed from memory"""
return {
"events": current_state.get("final_ranked_feed", []),
"total": len(current_state.get("final_ranked_feed", []))
}
@app.get("/api/feeds")
def get_feeds_from_db(limit: int = 100):
"""Get feeds directly from database (for initial load)"""
try:
feeds = storage_manager.get_recent_feeds(limit=limit)
# FIELD_NORMALIZATION + district categorization
normalized_feeds = []
for feed in feeds:
# Ensure frontend-compatible field names
normalized = {
"event_id": feed.get("event_id"),
"summary": feed.get("summary", ""),
"domain": feed.get("domain", "unknown"),
"severity": feed.get("severity", "medium"),
"impact_type": feed.get("impact_type", "risk"),
"confidence": feed.get("confidence", 0.5),
"timestamp": feed.get("timestamp"),
"district": categorize_feed_by_district(feed)
}
normalized_feeds.append(normalized)
return {
"events": normalized_feeds,
"total": len(normalized_feeds),
"source": "database"
}
except Exception as e:
logger.error(f"[API] Error fetching feeds: {e}")
return {"events": [], "total": 0, "error": str(e)}
@app.get("/api/feeds/by_district/{district}")
def get_feeds_by_district(district: str, limit: int = 50):
"""Get feeds for specific district"""
try:
all_feeds = storage_manager.get_recent_feeds(limit=200)
# Filter by district
district_feeds = []
for feed in all_feeds:
feed["district"] = categorize_feed_by_district(feed)
if feed["district"].lower() == district.lower():
district_feeds.append(feed)
if len(district_feeds) >= limit:
break
return {
"district": district,
"events": district_feeds,
"total": len(district_feeds)
}
except Exception as e:
logger.error(f"[API] Error fetching district feeds: {e}")
return {"events": [], "total": 0, "error": str(e)}
@app.get("/api/rivernet")
def get_rivernet_status():
"""Get real-time river monitoring data from RiverNet.lk"""
try:
from src.utils.utils import tool_rivernet_status
river_data = tool_rivernet_status()
return river_data
except Exception as e:
logger.error(f"[API] Error fetching rivernet data: {e}")
return {
"rivers": [],
"alerts": [],
"summary": {"total_monitored": 0, "overall_status": "error", "has_alerts": False},
"error": str(e)
}
@app.get("/api/weather/historical")
def get_historical_climate_data():
"""
Get 30-year historical flood pattern analysis.
Returns climate trend data including:
- Average annual rainfall
- Maximum daily rainfall records
- Heavy/extreme rain day counts
- Decadal comparison (1995-2025)
- Key climate change findings
"""
try:
from src.utils.utils import tool_floodwatch_historical
historical_data = tool_floodwatch_historical()
return {
"status": "success",
"data": historical_data
}
except Exception as e:
logger.error(f"[API] Error fetching historical data: {e}")
return {
"status": "error",
"error": str(e)
}
@app.get("/api/weather/threat")
def get_national_threat_score():
"""
Get national flood threat score (0-100).
Aggregates river status, DMC alerts, and seasonal factors
to compute an overall threat level for Sri Lanka.
Returns:
- national_threat_score (0-100)
- threat_level (CRITICAL/HIGH/MODERATE/LOW)
- breakdown by category
- risk district lists
"""
try:
from src.utils.utils import tool_rivernet_status, tool_calculate_national_threat, tool_dmc_alerts
# Get river data
river_data = None
try:
river_data = tool_rivernet_status()
except Exception as e:
logger.warning(f"[ThreatAPI] RiverNet unavailable: {e}")
# Get DMC alerts
dmc_data = None
try:
dmc_result = tool_dmc_alerts()
dmc_data = dmc_result.get("alerts", [])
except Exception as e:
logger.warning(f"[ThreatAPI] DMC unavailable: {e}")
# Calculate threat score
threat_data = tool_calculate_national_threat(
river_data=river_data,
dmc_alerts=dmc_data
)
return {
"status": "success",
**threat_data
}
except Exception as e:
logger.error(f"[API] Error calculating threat: {e}")
return {
"status": "error",
"national_threat_score": 0,
"threat_level": "UNKNOWN",
"error": str(e)
}
# ============================================
# INTEL CONFIG API - User Keywords & Profiles
# ============================================
# Global intel config (loaded from file)
INTEL_CONFIG_PATH = os.path.join(os.path.dirname(__file__), "data", "intel_config.json")
# Default config structure
DEFAULT_INTEL_CONFIG = {
"user_profiles": {
"twitter": [],
"facebook": [],
"linkedin": []
},
"user_keywords": [],
"user_products": []
}
def load_intel_config() -> dict:
"""Load intel config from JSON file."""
try:
if os.path.exists(INTEL_CONFIG_PATH):
with open(INTEL_CONFIG_PATH, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
logger.warning(f"[Intel Config] Error loading config: {e}")
return DEFAULT_INTEL_CONFIG.copy()
def save_intel_config(config: dict) -> bool:
"""Save intel config to JSON file."""
try:
os.makedirs(os.path.dirname(INTEL_CONFIG_PATH), exist_ok=True)
with open(INTEL_CONFIG_PATH, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2, ensure_ascii=False)
return True
except Exception as e:
logger.error(f"[Intel Config] Error saving config: {e}")
return False
# Load config on startup
intel_config = load_intel_config()
@app.get("/api/intel/config")
def get_intel_config():
"""
Get current intelligence configuration.
Returns user-defined keywords, products, and social profiles to monitor.
"""
global intel_config
intel_config = load_intel_config() # Refresh from file
return {
"status": "success",
"config": intel_config
}
class IntelConfigUpdate(BaseModel):
user_profiles: dict = None
user_keywords: list = None
user_products: list = None
@app.post("/api/intel/config")
def update_intel_config(config_update: IntelConfigUpdate):
"""
Update intelligence configuration.
Accepts user-defined keywords, products, and social profiles.
Changes take effect on the next agent collection cycle.
"""
global intel_config
try:
# Update fields if provided
if config_update.user_profiles is not None:
intel_config["user_profiles"] = config_update.user_profiles
if config_update.user_keywords is not None:
intel_config["user_keywords"] = config_update.user_keywords
if config_update.user_products is not None:
intel_config["user_products"] = config_update.user_products
# Save to file
if save_intel_config(intel_config):
logger.info(f"[Intel Config] Updated: {len(intel_config.get('user_keywords', []))} keywords, "
f"{sum(len(v) for v in intel_config.get('user_profiles', {}).values())} profiles")
return {
"status": "updated",
"config": intel_config
}
else:
return {"status": "error", "error": "Failed to save configuration"}
except Exception as e:
logger.error(f"[Intel Config] Update error: {e}")
return {"status": "error", "error": str(e)}
def get_user_intel_config() -> dict:
"""
Get the current intel config for use by agents.
This function is called by social agents to get user-defined keywords and profiles.
"""
global intel_config
return intel_config
# ============================================
# SITUATIONAL AWARENESS API ENDPOINTS (NEW)
# ============================================
@app.get("/api/power")
def get_power_status():
"""
Get CEB power outage / load shedding status.
Returns current power supply status, active load shedding schedules,
and any CEB announcements.
"""
try:
from src.utils.utils import tool_ceb_power_status
power_data = tool_ceb_power_status()
return {
"status": "success",
**power_data
}
except Exception as e:
logger.error(f"[API] Error fetching power status: {e}")
return {
"status": "error",
"load_shedding_active": False,
"error": str(e)
}
@app.get("/api/fuel")
def get_fuel_prices():
"""
Get current fuel prices in Sri Lanka.
Returns prices for Petrol 92/95, Diesel, Super Diesel, and Kerosene.
"""
try:
from src.utils.utils import tool_fuel_prices
fuel_data = tool_fuel_prices()
return {
"status": "success",
**fuel_data
}
except Exception as e:
logger.error(f"[API] Error fetching fuel prices: {e}")
return {
"status": "error",
"prices": {},
"error": str(e)
}
@app.get("/api/economy")
def get_economic_indicators():
"""
Get key economic indicators from CBSL.
Returns inflation rates, policy rates, exchange rates, and forex reserves.
"""
try:
from src.utils.utils import tool_cbsl_indicators
economy_data = tool_cbsl_indicators()
return {
"status": "success",
**economy_data
}
except Exception as e:
logger.error(f"[API] Error fetching economic indicators: {e}")
return {
"status": "error",
"indicators": {},
"error": str(e)
}
@app.get("/api/health")
def get_health_alerts():
"""
Get health alerts and disease information.
Returns current health alerts, dengue case data, and health advisories.
"""
try:
from src.utils.utils import tool_health_alerts
health_data = tool_health_alerts()
return {
"status": "success",
**health_data
}
except Exception as e:
logger.error(f"[API] Error fetching health data: {e}")
return {
"status": "error",
"alerts": [],
"dengue": {},
"error": str(e)
}
@app.get("/api/commodities")
def get_commodity_prices():
"""
Get prices for essential commodities.
Returns current prices for rice, sugar, dhal, milk powder, and other staples.
"""
try:
from src.utils.utils import tool_commodity_prices
commodity_data = tool_commodity_prices()
return {
"status": "success",
**commodity_data
}
except Exception as e:
logger.error(f"[API] Error fetching commodity prices: {e}")
return {
"status": "error",
"commodities": [],
"error": str(e)
}
@app.get("/api/water")
def get_water_supply_status():
"""
Get water supply disruption alerts from NWSDB.
Returns active disruptions, affected areas, and restoration estimates.
"""
try:
from src.utils.utils import tool_water_supply_alerts
water_data = tool_water_supply_alerts()
return {
"status": "success",
**water_data
}
except Exception as e:
logger.error(f"[API] Error fetching water status: {e}")
return {
"status": "error",
"active_disruptions": [],
"error": str(e)
}
# NOTE: Weather predictions endpoint moved to async version below (line ~1540)
# NOTE: Currency prediction endpoint moved to async version below (line ~1680)
@app.get("/api/currency/history")
def get_currency_history(days: int = 7):
"""
Get historical USD/LKR exchange rate data.
Args:
days: Number of days of history to return (default 7)
Returns:
List of historical rates with date and close price.
"""
try:
from pathlib import Path
import pandas as pd
# Path to currency data
data_dir = Path(__file__).parent / "models" / "currency-volatility-prediction" / "artifacts" / "data"
# Find the data file
data_files = list(data_dir.glob("currency_data_*.csv")) if data_dir.exists() else []
if data_files:
# Get most recent data file
latest_file = max(data_files, key=lambda p: p.stem)
df = pd.read_csv(latest_file)
# Get last N days
df['date'] = pd.to_datetime(df['date'])
df = df.sort_values('date', ascending=False).head(days)
df = df.sort_values('date', ascending=True)
history = []
for _, row in df.iterrows():
history.append({
"date": row['date'].strftime("%Y-%m-%d"),
"close": float(row['close']),
"high": float(row.get('high', row['close'])),
"low": float(row.get('low', row['close']))
})
return {
"status": "success",
"history": history,
"days": len(history)
}
return {
"status": "no_data",
"message": "No historical data available. Run data ingestion first.",
"history": []
}
except Exception as e:
logger.error(f"[CurrencyAPI] Error fetching history: {e}")
return {
"status": "error",
"error": str(e),
"history": []
}
# ============================================
# TRENDING DETECTION ENDPOINTS
# ============================================
@app.get("/api/trending")
def get_trending_topics(limit: int = 10):
"""
Get currently trending topics.
Returns topics with momentum > 2x (gaining traction).
"""
try:
from src.utils.trending_detector import get_trending_now, get_spikes
# Use the global storage_manager instance defined earlier in main.py
# no need to import it if we are inside main.py function scope where it's visible or passed
# But since this is a route function, it might need global access or import.
# Assuming storage_manager is available globally in this file as it was initialized earlier.
trending = get_trending_now(limit=limit)
spikes = get_spikes()
# Enrich top 5 trending topics with related feeds
for topic in trending[:5]:
keyword = topic["topic"]
# Search for relevant feeds (limit 2 per topic to keep payload small)
try:
related = storage_manager.search_feeds(keyword, limit=2)
topic["related_feeds"] = related
except Exception as e:
logger.warning(f"Error searching feeds for topic {keyword}: {e}")
topic["related_feeds"] = []
return {
"status": "success",
"trending_topics": trending,
"spike_alerts": spikes,
"total_trending": len(trending),
"total_spikes": len(spikes)
}
except Exception as e:
logger.error(f"[TrendingAPI] Error: {e}")
return {
"status": "error",
"error": str(e),
"trending_topics": [],
"spike_alerts": []
}
@app.get("/api/trending/topic/{topic}")
def get_topic_history(topic: str, hours: int = 24):
"""
Get hourly mention history for a specific topic.
Args:
topic: Topic name to get history for
hours: Number of hours of history to return (default 24)
"""
try:
from src.utils.trending_detector import get_trending_detector
detector = get_trending_detector()
history = detector.get_topic_history(topic, hours=hours)
momentum = detector.get_momentum(topic)
is_spike = detector.is_spike(topic)
return {
"status": "success",
"topic": topic,
"momentum": momentum,
"is_spike": is_spike,
"history": history
}
except Exception as e:
logger.error(f"[TrendingAPI] Error getting history for {topic}: {e}")
return {
"status": "error",
"error": str(e),
"topic": topic,
"momentum": 1.0,
"is_spike": False,
"history": []
}
@app.post("/api/trending/record")
def record_topic_mention(topic: str, source: str = "manual", domain: str = "general"):
"""
Record a topic mention (for testing/manual tracking).
Args:
topic: Topic/keyword being mentioned
source: Source of the mention (twitter, news, etc.)
domain: Domain category (political, economical, etc.)
"""
try:
from src.utils.trending_detector import record_topic_mention as record_mention
record_mention(topic=topic, source=source, domain=domain)
# Get updated momentum
from src.utils.trending_detector import get_trending_detector
detector = get_trending_detector()
momentum = detector.get_momentum(topic)
return {
"status": "success",
"message": f"Recorded mention for '{topic}'",
"current_momentum": momentum,
"is_spike": detector.is_spike(topic)
}
except Exception as e:
logger.error(f"[TrendingAPI] Error recording mention: {e}")
return {
"status": "error",
"error": str(e)
}
# ============================================
# ANOMALY DETECTION ENDPOINTS
# ============================================
# Lazy-loaded anomaly detection components
_anomaly_models = {} # {language: model}
_vectorizer = None
_language_detector = None
def _load_anomaly_components():
"""Load per-language anomaly detection models and vectorizer"""
global _anomaly_models, _vectorizer, _language_detector
if _anomaly_models:
return True
try:
import joblib
from pathlib import Path
# Model directories
output_dir = Path(__file__).parent / "models" / "anomaly-detection" / "output"
artifacts_dir = Path(__file__).parent / "models" / "anomaly-detection" / "artifacts" / "model_trainer"
# Load per-language models
for lang in ["english", "sinhala", "tamil"]:
for search_dir in [artifacts_dir, output_dir]:
model_path = search_dir / f"isolation_forest_{lang}.joblib"
if model_path.exists():
_anomaly_models[lang] = joblib.load(model_path)
logger.info(f"[AnomalyAPI] Loaded {lang} model from {model_path.name}")
break
# Fallback to legacy model if no per-language models found
if not _anomaly_models:
legacy_paths = [
output_dir / "isolation_forest_embeddings_only.joblib",
output_dir / "isolation_forest_model.joblib",
]
for legacy_path in legacy_paths:
if legacy_path.exists():
_anomaly_models["english"] = joblib.load(legacy_path)
logger.info(f"[AnomalyAPI] Loaded legacy model: {legacy_path.name}")
break
if not _anomaly_models:
logger.warning("[AnomalyAPI] No trained models found. Run training first.")
return False
# Load vectorizer and language detector
from models.anomaly_detection.src.utils.vectorizer import get_vectorizer
from models.anomaly_detection.src.utils.language_detector import detect_language
_vectorizer = get_vectorizer()
_language_detector = detect_language
logger.info(f"[AnomalyAPI] ✓ Loaded models for: {list(_anomaly_models.keys())}")
return True
except Exception as e:
logger.error(f"[AnomalyAPI] Failed to load components: {e}")
return False
@app.post("/api/predict")
def predict_anomaly(texts: List[str] = None, text: str = None):
"""
Run anomaly detection on text(s) using per-language models.
Args:
texts: List of texts to analyze
text: Single text to analyze (alternative to texts)
Returns:
Predictions with anomaly scores
"""
try:
# Handle input
if text and not texts:
texts = [text]
if not texts:
return {"error": "No text provided. Use 'text' or 'texts' field.", "predictions": []}
# Load components
if not _load_anomaly_components():
# If no model, return scores based on heuristics
return {
"predictions": [
{
"text": t[:100] + "..." if len(t) > 100 else t,
"is_anomaly": False,
"anomaly_score": 0.0,
"method": "heuristic"
}
for t in texts
],
"model_status": "not_trained",
"message": "Model not trained yet. Using default scores."
}
# Process texts with per-language models
predictions = []
for t in texts:
try:
# Detect language
lang, lang_conf = _language_detector(t)
# Vectorize
vector = _vectorizer.vectorize(t, lang)
# Select appropriate model
if lang in _anomaly_models:
model = _anomaly_models[lang]
method = f"isolation_forest_{lang}"
elif "english" in _anomaly_models:
model = _anomaly_models["english"]
method = "isolation_forest_english_fallback"
else:
# No model available
predictions.append({
"text": t[:100] + "..." if len(t) > 100 else t,
"is_anomaly": False,
"anomaly_score": 0.0,
"language": lang,
"method": "no_model"
})
continue
# Predict: -1 = anomaly, 1 = normal
prediction = model.predict([vector])[0]
# Get anomaly score
if hasattr(model, 'decision_function'):
score = -model.decision_function([vector])[0]
elif hasattr(model, 'score_samples'):
score = -model.score_samples([vector])[0]
else:
score = 1.0 if prediction == -1 else 0.0
predictions.append({
"text": t[:100] + "..." if len(t) > 100 else t,
"is_anomaly": prediction == -1,
"anomaly_score": float(score),
"language": lang,
"method": method
})
except Exception as e:
logger.error(f"[AnomalyAPI] Error predicting: {e}")
predictions.append({
"text": t[:100] + "..." if len(t) > 100 else t,
"is_anomaly": False,
"anomaly_score": 0.0,
"error": str(e)
})
return {
"predictions": predictions,
"total": len(predictions),
"anomalies_found": sum(1 for p in predictions if p.get("is_anomaly")),
"model_status": "loaded",
"models_available": list(_anomaly_models.keys())
}
except Exception as e:
logger.error(f"[AnomalyAPI] Predict error: {e}", exc_info=True)
return {"error": str(e), "predictions": []}
@app.get("/api/anomalies")
def get_anomalies(limit: int = 20, threshold: float = 0.5):
"""
Get recent feeds that are flagged as anomalies.
Args:
limit: Max number of results
threshold: Anomaly score threshold (0-1)
Returns:
List of anomalous events
"""
try:
# Get recent feeds
feeds = storage_manager.get_recent_feeds(limit=100)
if not feeds:
# No feeds yet - return helpful message
return {
"anomalies": [],
"total": 0,
"model_status": "no_data",
"message": "No feed data available yet. Wait for graph execution to complete."
}
if not _load_anomaly_components():
# Use severity + keyword-based scoring as intelligent fallback
anomalies = []
anomaly_keywords = ["emergency", "crisis", "breaking", "urgent", "alert",
"warning", "critical", "disaster", "flood", "protest"]
for f in feeds:
score = 0.0
summary = str(f.get("summary", "")).lower()
severity = f.get("severity", "low")
# Severity-based scoring
if severity == "critical": score = 0.9
elif severity == "high": score = 0.75
elif severity == "medium": score = 0.5
else: score = 0.25
# Keyword boosting
keyword_matches = sum(1 for kw in anomaly_keywords if kw in summary)
if keyword_matches > 0:
score = min(1.0, score + (keyword_matches * 0.1))
# Only include if above threshold
if score >= threshold:
anomalies.append({
**f,
"anomaly_score": round(score, 3),
"is_anomaly": score >= 0.7
})
# Sort by anomaly score
anomalies.sort(key=lambda x: x.get("anomaly_score", 0), reverse=True)
return {
"anomalies": anomalies[:limit],
"total": len(anomalies),
"threshold": threshold,
"model_status": "fallback_scoring",
"message": "Using severity + keyword scoring. Train ML model for advanced detection."
}
# ML Models are loaded - use per-language models for scoring
anomalies = []
per_lang_counts = {"english": 0, "sinhala": 0, "tamil": 0}
for feed in feeds:
summary = feed.get("summary", "")
if not summary:
continue
try:
lang, _ = _language_detector(summary)
vector = _vectorizer.vectorize(summary, lang)
# Select appropriate model
if lang in _anomaly_models:
model = _anomaly_models[lang]
method = f"isolation_forest_{lang}"
elif "english" in _anomaly_models:
model = _anomaly_models["english"]
method = "isolation_forest_english_fallback"
else:
continue
per_lang_counts[lang] = per_lang_counts.get(lang, 0) + 1
prediction = model.predict([vector])[0]
if hasattr(model, 'decision_function'):
score = -model.decision_function([vector])[0]
else:
score = 1.0 if prediction == -1 else 0.0
# Normalize score to 0-1 range
normalized_score = max(0, min(1, (score + 0.5)))
if prediction == -1 or normalized_score >= threshold:
anomalies.append({
**feed,
"anomaly_score": float(round(normalized_score, 3)),
"is_anomaly": prediction == -1,
"language": lang,
"detection_method": method
})
if len(anomalies) >= limit:
break
except Exception as e:
logger.debug(f"[AnomalyAPI] Error scoring feed: {e}")
continue
# Sort by anomaly score
anomalies.sort(key=lambda x: x.get("anomaly_score", 0), reverse=True)
return {
"anomalies": anomalies,
"total": len(anomalies),
"threshold": threshold,
"model_status": "ml_active",
"models_loaded": list(_anomaly_models.keys()),
"per_language_counts": per_lang_counts
}
except Exception as e:
logger.error(f"[AnomalyAPI] Get anomalies error: {e}")
return {"anomalies": [], "total": 0, "error": str(e)}
@app.get("/api/model/status")
def get_model_status():
"""Get anomaly detection model status"""
try:
from pathlib import Path
output_dir = Path(__file__).parent / "models" / "anomaly-detection" / "output"
models_found = []
if output_dir.exists():
for f in output_dir.glob("*.joblib"):
models_found.append(f.name)
loaded = _anomaly_model is not None
return {
"model_loaded": loaded,
"models_available": models_found,
"vectorizer_loaded": _vectorizer is not None,
"batch_threshold": int(os.getenv("BATCH_THRESHOLD", "1000")),
"output_directory": str(output_dir)
}
except Exception as e:
return {"error": str(e), "model_loaded": False}
# ============================================
# RAG CHATBOT ENDPOINTS
# ============================================
# Lazy-loaded RAG instance
_rag_instance = None
def _get_rag():
"""Get or create RAG instance"""
global _rag_instance
if _rag_instance is None:
try:
from src.rag import RogerRAG
_rag_instance = RogerRAG()
logger.info("[RAG API] ✓ RAG instance initialized")
except Exception as e:
logger.error(f"[RAG API] Failed to initialize RAG: {e}")
return None
return _rag_instance
class ChatRequest(BaseModel):
message: str
domain_filter: Optional[str] = None
use_history: bool = True
class ChatResponse(BaseModel):
answer: str
sources: List[Dict[str, Any]] = []
reformulated: Optional[str] = None
docs_found: int = 0
error: Optional[str] = None
@app.post("/api/rag/chat", response_model=ChatResponse)
def rag_chat(request: ChatRequest):
"""
Chat with the RAG system.
Args:
message: User's question
domain_filter: Optional domain (political, economic, weather, social, intelligence)
use_history: Whether to use chat history for context (default: True)
Returns:
AI response with sources
"""
try:
rag = _get_rag()
if not rag:
return ChatResponse(
answer="RAG system not available. Please check server logs.",
error="RAG initialization failed"
)
result = rag.query(
question=request.message,
domain_filter=request.domain_filter,
use_history=request.use_history
)
return ChatResponse(
answer=result.get("answer", "No response generated."),
sources=result.get("sources", []),
reformulated=result.get("reformulated"),
docs_found=result.get("docs_found", 0),
error=result.get("error")
)
except Exception as e:
logger.error(f"[RAG API] Chat error: {e}", exc_info=True)
return ChatResponse(
answer=f"Error processing your request: {str(e)}",
error=str(e)
)
@app.get("/api/rag/stats")
def rag_stats():
"""Get RAG system statistics"""
try:
rag = _get_rag()
if not rag:
return {"error": "RAG not available", "status": "offline"}
stats = rag.get_stats()
stats["status"] = "online"
return stats
except Exception as e:
return {"error": str(e), "status": "error"}
@app.post("/api/rag/clear")
def rag_clear_history():
"""Clear RAG chat history"""
try:
rag = _get_rag()
if rag:
rag.clear_history()
return {"message": "Chat history cleared", "success": True}
return {"message": "RAG not available", "success": False}
except Exception as e:
return {"error": str(e), "success": False}
# =============================================================================
# INTELLIGENCE CONFIG ENDPOINTS (User-defined monitoring targets)
# =============================================================================
INTEL_CONFIG_PATH = os.path.join(os.path.dirname(__file__), "src", "config", "intel_config.json")
def _ensure_intel_config() -> str:
"""Ensure config directory and file exist with default structure"""
os.makedirs(os.path.dirname(INTEL_CONFIG_PATH), exist_ok=True)
if not os.path.exists(INTEL_CONFIG_PATH):
default_config = {
"user_profiles": {"twitter": [], "facebook": [], "linkedin": []},
"user_keywords": [],
"user_products": []
}
with open(INTEL_CONFIG_PATH, "w", encoding="utf-8") as f:
json.dump(default_config, f, indent=2)
logger.info(f"[IntelConfig] Created default config at {INTEL_CONFIG_PATH}")
return INTEL_CONFIG_PATH
@app.get("/api/intel/config")
def get_intel_config():
"""
Get current intelligence monitoring configuration.
Returns user-defined profiles, keywords, and products that the
Intelligence Agent monitors in addition to defaults.
"""
try:
path = _ensure_intel_config()
with open(path, "r", encoding="utf-8") as f:
config = json.load(f)
return {"status": "success", "config": config}
except Exception as e:
logger.error(f"[IntelConfig] Error reading config: {e}")
return {"status": "error", "error": str(e)}
class IntelConfigUpdate(BaseModel):
user_profiles: Optional[Dict[str, List[str]]] = None
user_keywords: Optional[List[str]] = None
user_products: Optional[List[str]] = None
@app.post("/api/intel/config")
def update_intel_config(config: IntelConfigUpdate):
"""
Update intelligence monitoring configuration.
Replaces the entire user config with the provided values.
"""
try:
path = _ensure_intel_config()
# Read existing config
with open(path, "r", encoding="utf-8") as f:
existing = json.load(f)
# Update with provided values
if config.user_profiles is not None:
existing["user_profiles"] = config.user_profiles
if config.user_keywords is not None:
existing["user_keywords"] = config.user_keywords
if config.user_products is not None:
existing["user_products"] = config.user_products
# Save
with open(path, "w", encoding="utf-8") as f:
json.dump(existing, f, indent=2)
logger.info(f"[IntelConfig] Updated config: {len(existing.get('user_keywords', []))} keywords, {sum(len(v) for v in existing.get('user_profiles', {}).values())} profiles")
return {"status": "updated", "config": existing}
except Exception as e:
logger.error(f"[IntelConfig] Error updating config: {e}")
return {"status": "error", "error": str(e)}
@app.post("/api/intel/config/add")
def add_intel_target(target_type: str, value: str, platform: Optional[str] = None):
"""
Add a single monitoring target.
Args:
target_type: "keyword", "product", or "profile"
value: The value to add
platform: Required for "profile" type (twitter, facebook, linkedin)
Example:
POST /api/intel/config/add?target_type=keyword&value=Colombo+Port
POST /api/intel/config/add?target_type=profile&value=CompetitorX&platform=twitter
"""
try:
path = _ensure_intel_config()
with open(path, "r", encoding="utf-8") as f:
config = json.load(f)
added = False
if target_type == "keyword":
if value not in config.get("user_keywords", []):
config.setdefault("user_keywords", []).append(value)
added = True
elif target_type == "product":
if value not in config.get("user_products", []):
config.setdefault("user_products", []).append(value)
added = True
elif target_type == "profile":
if not platform:
return {"status": "error", "error": "platform is required for profile type"}
profiles = config.setdefault("user_profiles", {})
platform_list = profiles.setdefault(platform, [])
if value not in platform_list:
platform_list.append(value)
added = True
else:
return {"status": "error", "error": f"Invalid target_type: {target_type}"}
if added:
with open(path, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2)
logger.info(f"[IntelConfig] Added {target_type}: {value}")
return {"status": "added" if added else "already_exists", "config": config}
except Exception as e:
logger.error(f"[IntelConfig] Error adding target: {e}")
return {"status": "error", "error": str(e)}
@app.delete("/api/intel/config/remove")
def remove_intel_target(target_type: str, value: str, platform: Optional[str] = None):
"""
Remove a monitoring target.
Args:
target_type: "keyword", "product", or "profile"
value: The value to remove
platform: Required for "profile" type
"""
try:
path = _ensure_intel_config()
with open(path, "r", encoding="utf-8") as f:
config = json.load(f)
removed = False
if target_type == "keyword":
if value in config.get("user_keywords", []):
config["user_keywords"].remove(value)
removed = True
elif target_type == "product":
if value in config.get("user_products", []):
config["user_products"].remove(value)
removed = True
elif target_type == "profile":
if not platform:
return {"status": "error", "error": "platform is required for profile type"}
if platform in config.get("user_profiles", {}) and value in config["user_profiles"][platform]:
config["user_profiles"][platform].remove(value)
removed = True
else:
return {"status": "error", "error": f"Invalid target_type: {target_type}"}
if removed:
with open(path, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2)
logger.info(f"[IntelConfig] Removed {target_type}: {value}")
return {"status": "removed" if removed else "not_found", "config": config}
except Exception as e:
logger.error(f"[IntelConfig] Error removing target: {e}")
return {"status": "error", "error": str(e)}
# =============================================================================
# WEATHER PREDICTION ENDPOINTS
# =============================================================================
# Lazy-loaded weather predictor
_weather_predictor = None
def get_weather_predictor():
"""Lazy-load the weather predictor using isolated import."""
global _weather_predictor
if _weather_predictor is not None:
return _weather_predictor
try:
import importlib.util
from pathlib import Path
import json
# Use importlib.util for fully isolated import (avoids package collisions)
weather_src = Path(__file__).parent / "models" / "weather-prediction" / "src"
predictor_path = weather_src / "components" / "predictor.py"
if not predictor_path.exists():
logger.error(f"[WeatherAPI] predictor.py not found at {predictor_path}")
return None
# CRITICAL: Remove any conflicting paths (currency-volatility-prediction/src)
# to avoid entity.config_entity collision
currency_src = str(Path(__file__).parent / "models" / "currency-volatility-prediction" / "src")
stock_src = str(Path(__file__).parent / "models" / "stock-price-prediction" / "src")
anomaly_src = str(Path(__file__).parent / "models" / "anomaly-detection" / "src")
original_path = sys.path.copy()
sys.path = [p for p in sys.path if currency_src not in p and stock_src not in p and anomaly_src not in p]
# CRITICAL: Clear cached entity modules that may have been imported from wrong path
modules_to_clear = [k for k in sys.modules.keys() if 'entity' in k.lower() or 'config_entity' in k.lower()]
saved_modules = {}
for mod_name in modules_to_clear:
saved_modules[mod_name] = sys.modules.pop(mod_name, None)
# Add weather src to path FIRST for relative imports
weather_src_str = str(weather_src)
if weather_src_str not in sys.path:
sys.path.insert(0, weather_src_str)
try:
# Now load predictor module
spec = importlib.util.spec_from_file_location(
"weather_predictor_module",
str(predictor_path)
)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
_weather_predictor = module.WeatherPredictor()
logger.info("[WeatherAPI] ✓ Weather predictor initialized via isolated import")
finally:
# Restore original path
sys.path = original_path
# Restore saved modules (to avoid breaking other parts of the system)
for mod_name, mod in saved_modules.items():
if mod is not None:
sys.modules[mod_name] = mod
return _weather_predictor
except Exception as e:
logger.error(f"[WeatherAPI] Failed to initialize predictor: {e}")
import traceback
logger.error(f"[WeatherAPI] Full traceback:\n{traceback.format_exc()}")
return None
@app.get("/api/weather/predictions")
async def get_weather_predictions():
"""
Get weather predictions for all 25 Sri Lankan districts.
Returns next-day predictions including:
- Temperature (high/low)
- Rainfall (amount and probability)
- Flood risk
- Severity classification
"""
predictor = get_weather_predictor()
if predictor is None:
return {
"status": "unavailable",
"message": "Weather prediction model not loaded",
"predictions": None
}
try:
# Try to get latest predictions from file
predictions = predictor.get_latest_predictions()
if predictions is None:
# Generate new predictions
logger.info("[WeatherAPI] Generating new predictions...")
predictions = predictor.predict_all_districts()
predictor.save_predictions(predictions)
return {
"status": "success",
"prediction_date": predictions.get("prediction_date"),
"generated_at": predictions.get("generated_at"),
"districts": predictions.get("districts", {}),
"total_districts": len(predictions.get("districts", {}))
}
except Exception as e:
logger.error(f"[WeatherAPI] Error getting predictions: {e}")
return {"status": "error", "message": str(e)}
@app.get("/api/weather/predictions/{district}")
async def get_district_weather(district: str):
"""Get weather prediction for a specific district."""
predictor = get_weather_predictor()
if predictor is None:
return {"status": "unavailable", "message": "Weather predictor not loaded"}
try:
predictions = predictor.get_latest_predictions()
if predictions is None:
predictions = predictor.predict_all_districts()
districts = predictions.get("districts", {})
# Case-insensitive lookup
district_key = None
for d in districts.keys():
if d.lower() == district.lower():
district_key = d
break
if district_key is None:
return {
"status": "not_found",
"message": f"District '{district}' not found",
"available_districts": list(districts.keys())
}
return {
"status": "success",
"district": district_key,
"prediction_date": predictions.get("prediction_date"),
"prediction": districts[district_key]
}
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/api/weather/model/status")
async def get_weather_model_status():
"""Get weather prediction model status and training info."""
from pathlib import Path
models_dir = Path(__file__).parent / "models" / "weather-prediction" / "artifacts" / "models"
predictions_dir = Path(__file__).parent / "models" / "weather-prediction" / "output" / "predictions"
model_files = list(models_dir.glob("lstm_*.h5")) if models_dir.exists() else []
prediction_files = list(predictions_dir.glob("predictions_*.json")) if predictions_dir.exists() else []
latest_prediction = None
if prediction_files:
latest = max(prediction_files, key=lambda p: p.stat().st_mtime)
latest_prediction = {
"file": latest.name,
"modified": datetime.fromtimestamp(latest.stat().st_mtime).isoformat()
}
return {
"status": "available" if model_files else "not_trained",
"models_trained": len(model_files),
"trained_stations": [f.stem.replace("lstm_", "").upper() for f in model_files],
"latest_prediction": latest_prediction,
"predictions_available": len(prediction_files)
}
# =============================================================================
# CURRENCY PREDICTION ENDPOINTS
# =============================================================================
# Lazy-loaded currency predictor
_currency_predictor = None
def get_currency_predictor():
"""Lazy-load the currency predictor."""
global _currency_predictor
if _currency_predictor is None:
try:
import sys
from pathlib import Path
currency_path = Path(__file__).parent / "models" / "currency-volatility-prediction" / "src"
sys.path.insert(0, str(currency_path))
from components.predictor import CurrencyPredictor
_currency_predictor = CurrencyPredictor()
logger.info("[CurrencyAPI] Currency predictor initialized")
except Exception as e:
logger.warning(f"[CurrencyAPI] Failed to initialize predictor: {e}")
_currency_predictor = None
return _currency_predictor
@app.get("/api/currency/prediction")
async def get_currency_prediction():
"""
Get USD/LKR currency prediction for next day.
Returns:
- Current rate
- Predicted rate
- Expected change percentage
- Direction (strengthening/weakening)
- Volatility classification
"""
predictor = get_currency_predictor()
if predictor is None:
# Generate fallback prediction inline
import numpy as np
current_rate = 298.0
np.random.seed(int(datetime.now().timestamp()) % 2**31)
change_pct = np.random.normal(0.05, 0.3)
predicted_rate = current_rate * (1 + change_pct / 100)
return {
"status": "success",
"prediction": {
"prediction_date": (datetime.now() + timedelta(days=1)).strftime("%Y-%m-%d"),
"generated_at": datetime.now().isoformat(),
"model_version": "fallback",
"is_fallback": True,
"current_rate": round(current_rate, 2),
"predicted_rate": round(predicted_rate, 2),
"expected_change": round(predicted_rate - current_rate, 2),
"expected_change_pct": round(change_pct, 3),
"direction": "strengthening" if change_pct < 0 else "weakening",
"direction_emoji": "📈" if change_pct < 0 else "📉",
"volatility_class": "low",
"note": "Using fallback - model initializing"
}
}
try:
# Try to get latest prediction from file
prediction = predictor.get_latest_prediction()
if prediction is None:
# Generate fallback
logger.info("[CurrencyAPI] No prediction found, generating fallback...")
prediction = predictor.generate_fallback_prediction()
predictor.save_prediction(prediction)
return {
"status": "success",
"prediction": prediction
}
except Exception as e:
logger.error(f"[CurrencyAPI] Error: {e}")
return {"status": "error", "message": str(e)}
@app.get("/api/currency/history")
async def get_currency_history(days: int = 30):
"""Get historical USD/LKR rates."""
from pathlib import Path
import pandas as pd
try:
data_dir = Path(__file__).parent / "models" / "currency-volatility-prediction" / "artifacts" / "data"
csv_files = list(data_dir.glob("currency_data_*.csv")) if data_dir.exists() else []
if not csv_files:
return {"status": "no_data", "message": "No currency data available"}
latest = max(csv_files, key=lambda p: p.stat().st_mtime)
df = pd.read_csv(latest, parse_dates=["date"])
# Get last N days
df = df.tail(days)
history = []
for _, row in df.iterrows():
history.append({
"date": row["date"].strftime("%Y-%m-%d") if hasattr(row["date"], "strftime") else str(row["date"]),
"close": round(row["close"], 2),
"high": round(row.get("high", row["close"]), 2),
"low": round(row.get("low", row["close"]), 2),
"daily_return_pct": round(row.get("daily_return", 0) * 100, 3)
})
return {
"status": "success",
"days": len(history),
"history": history
}
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/api/currency/model/status")
async def get_currency_model_status():
"""Get currency prediction model status."""
from pathlib import Path
models_dir = Path(__file__).parent / "models" / "currency-volatility-prediction" / "artifacts" / "models"
predictions_dir = Path(__file__).parent / "models" / "currency-volatility-prediction" / "output" / "predictions"
model_exists = (models_dir / "gru_usd_lkr.h5").exists() if models_dir.exists() else False
prediction_files = list(predictions_dir.glob("currency_prediction_*.json")) if predictions_dir.exists() else []
latest_prediction = None
if prediction_files:
latest = max(prediction_files, key=lambda p: p.stat().st_mtime)
latest_prediction = {
"file": latest.name,
"modified": datetime.fromtimestamp(latest.stat().st_mtime).isoformat()
}
return {
"status": "available" if model_exists else "not_trained",
"model_type": "GRU",
"target": "USD/LKR",
"latest_prediction": latest_prediction,
"predictions_available": len(prediction_files)
}
# =============================================================================
# STOCK PREDICTION ENDPOINTS
# =============================================================================
# Lazy-loaded stock predictor
_stock_predictor = None
def get_stock_predictor():
"""Lazy-load the stock predictor."""
global _stock_predictor
if _stock_predictor is None:
try:
import sys
from pathlib import Path
stock_path = Path(__file__).parent / "models" / "stock-price-prediction" / "src"
sys.path.insert(0, str(stock_path))
from components.predictor import StockPredictor
_stock_predictor = StockPredictor()
logger.info("[StockAPI] Stock predictor initialized")
except Exception as e:
logger.warning(f"[StockAPI] Failed to initialize predictor: {e}")
_stock_predictor = None
return _stock_predictor
@app.get("/api/stocks/predictions")
async def get_stock_predictions():
"""
Get stock price predictions for all configured stocks.
Returns predictions for 10 popular stocks with:
- Current price
- Predicted next-day price
- Expected change percentage
- Trend classification (bullish/bearish/neutral)
- Model architecture used
"""
predictor = get_stock_predictor()
if predictor is None:
# Generate fallback even without predictor
try:
import sys
from pathlib import Path
stock_path = Path(__file__).parent / "models" / "stock-price-prediction" / "src"
sys.path.insert(0, str(stock_path))
from constants.training_pipeline import STOCKS_TO_TRAIN
from datetime import datetime
predictions = {
"prediction_date": (datetime.now()).strftime("%Y-%m-%d"),
"generated_at": datetime.now().isoformat(),
"stocks": {},
"summary": {"total_stocks": len(STOCKS_TO_TRAIN), "bullish": 0, "bearish": 0, "neutral": 0}
}
import numpy as np
for code, info in STOCKS_TO_TRAIN.items():
np.random.seed(hash(code) % 2**31)
change_pct = np.random.normal(0.1, 1.0)
trend = "bullish" if change_pct > 0.5 else "bearish" if change_pct < -0.5 else "neutral"
predictions["summary"][trend] = predictions["summary"].get(trend, 0) + 1
predictions["stocks"][code] = {
"symbol": code,
"name": info.get("name", code),
"sector": info.get("sector", "Unknown"),
"current_price": 100.0,
"predicted_price": 100.0 * (1 + change_pct / 100),
"expected_change_pct": round(change_pct, 3),
"trend": trend,
"trend_emoji": "📈" if trend == "bullish" else "📉" if trend == "bearish" else "➡️",
"confidence": round(np.random.uniform(0.65, 0.85), 2),
"is_fallback": True
}
return {"status": "success", "predictions": predictions}
except Exception as e:
return {"status": "unavailable", "message": f"Stock prediction model not loaded: {e}"}
try:
# Try to get latest predictions from file
predictions = predictor.get_latest_predictions()
if predictions is None:
# Generate fallback predictions
logger.info("[StockAPI] No predictions found, generating fallback...")
predictions = predictor.predict_all_stocks()
predictions = {
"prediction_date": (datetime.now()).strftime("%Y-%m-%d"),
"generated_at": datetime.now().isoformat(),
"stocks": predictions,
"summary": {"total_stocks": len(predictions)}
}
return {
"status": "success",
"predictions": predictions
}
except Exception as e:
logger.error(f"[StockAPI] Error: {e}")
return {"status": "error", "message": str(e)}
@app.get("/api/stocks/predictions/{symbol}")
async def get_stock_prediction_by_symbol(symbol: str):
"""Get prediction for a specific stock symbol."""
predictor = get_stock_predictor()
if predictor is None:
return {"status": "unavailable", "message": "Stock prediction model not loaded"}
try:
predictions = predictor.get_latest_predictions()
if predictions and symbol.upper() in predictions.get("stocks", {}):
return {
"status": "success",
"prediction": predictions["stocks"][symbol.upper()]
}
else:
# Generate fallback
return {
"status": "success",
"prediction": predictor._generate_fallback_prediction(symbol.upper())
}
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/api/stocks/model/status")
async def get_stock_model_status():
"""Get stock prediction model status for all stocks."""
from pathlib import Path
import json
models_dir = Path(__file__).parent / "models" / "stock-price-prediction" / "artifacts" / "models"
predictions_dir = Path(__file__).parent / "models" / "stock-price-prediction" / "output" / "predictions"
model_files = list(models_dir.glob("*_model.h5")) if models_dir.exists() else []
prediction_files = list(predictions_dir.glob("stock_predictions_*.json")) if predictions_dir.exists() else []
# Get training summary
summary_path = models_dir / "training_summary.json" if models_dir.exists() else None
training_summary = None
if summary_path and summary_path.exists():
with open(summary_path) as f:
training_summary = json.load(f)
latest_prediction = None
if prediction_files:
latest = max(prediction_files, key=lambda p: p.stat().st_mtime)
latest_prediction = {
"file": latest.name,
"modified": datetime.fromtimestamp(latest.stat().st_mtime).isoformat()
}
return {
"status": "available" if model_files else "not_trained",
"models_trained": len(model_files),
"trained_stocks": [f.stem.replace("_model", "").upper() for f in model_files],
"training_summary": training_summary,
"latest_prediction": latest_prediction,
"predictions_available": len(prediction_files)
}
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await manager.connect(websocket)
try:
# Send initial state
try:
await websocket.send_text(json.dumps(current_state, default=str))
except Exception as e:
logger.debug(f"[WS] Initial send failed: {e}")
await manager.disconnect(websocket)
return
# Main receive loop
while True:
try:
txt = await websocket.receive_text()
except WebSocketDisconnect:
logger.info("[WS] Client disconnected")
break
except Exception as e:
logger.debug(f"[WS] Receive error: {e}")
break
# Handle pong responses
try:
payload = json.loads(txt)
if isinstance(payload, dict) and payload.get("type") == "pong":
async with manager._lock:
meta = manager.active_connections.get(websocket)
if meta is not None:
meta['last_pong'] = utc_now()
meta['misses'] = 0
continue
except json.JSONDecodeError:
continue
finally:
await manager.disconnect(websocket)
if __name__ == "__main__":
import uvicorn
import uuid
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
|