File size: 8,307 Bytes
6229e10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
#pragma once
#include <ATen/core/ivalue.h>
#include <torch/script.h>
#include <torch/nn/functional/activation.h>
#include <iostream>
#include <string>
#include <vector>
#include <array>
#include <set>
#include "../enum/model_type.h"
#include "../../common/data_structures/verbosity.h"
#include "control.h"
#include "callback_base.h"
namespace sampling {
class ModelMeta {
public:
torch::jit::Module model;
midi::ModelMetadata meta;
};
static const int NUM_LAYERS = 6;
void load_checkpoint(const std::string &ckpt_path, const std::unique_ptr<ModelMeta> &m) {
try {
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
m->model = torch::jit::load(ckpt_path, torch::kCPU, loaded_extra_files);
if (loaded_extra_files["metadata.json"].size() == 0) {
throw std::runtime_error("ERROR LOADING MODEL : MODEL CONTAINS NO METADATA!");
}
util_protobuf::string_to_protobuf(loaded_extra_files["metadata.json"], &m->meta);
data_structures::LOGGER( "MODEL METADATA :" );
}
catch (const c10::Error& e) {
data_structures::LOGGER( e.what() );
throw std::runtime_error("ERROR LOADING MODEL.");
}
}
std::unique_ptr<ModelMeta> load_model(midi::HyperParam *param) {
auto model = std::make_unique<ModelMeta>();
load_checkpoint(param->ckpt(), model);
if (model->meta.model_dim() != -1) {
param->set_model_dim(model->meta.model_dim());
}
model->meta.set_num_heads(8);
model->meta.set_num_layers(6);
return model;
}
void sample_inner(std::vector<std::unique_ptr<SAMPLE_CONTROL>> &scon, std::vector<std::vector<int>> &seqs, torch::jit::Module *model, std::vector<torch::jit::IValue> &inputs, midi::HyperParam *param, CallbackManager *callbacks) {
if (!model) {
throw std::runtime_error("ERROR : MODEL IS INVALID.");
}
torch::Tensor logits;
torch::jit::IValue past_key_values;
auto outputs = model->forward(inputs).toTuple();
logits = outputs->elements()[0].toTensor().index(
{torch::indexing::Slice(),-1,torch::indexing::Slice()});
past_key_values = outputs->elements()[1];
// get logits for first in batch
std::vector<std::vector<int>> masks_copy;
std::vector<std::vector<float>> logits_copy;
for (int i=0; i<(int)seqs.size(); i++) {
logits_copy.push_back(std::vector<float>(logits[i].data_ptr<float>(), logits[i].data_ptr<float>() + logits[i].numel()));
}
// set masks
std::vector<std::set<midi::TOKEN_TYPE>> masked_tts;
int num_masked = 0;
for (int i=0; i<(int)seqs.size(); i++) {
std::vector<std::string> unmasked_types;
std::vector<int> mask = scon[i]->get_mask( seqs[i] );
masks_copy.push_back( mask );
masked_tts.push_back( scon[i]->rep->get_mask_token_types(mask) );
scon[i]->rep->show_mask_token_types(mask);
if ((!scon[i]->finished) && (!param->internal_disable_masking())) {
for (int j=0; j<(int)mask.size(); j++) {
if (mask[j] == 0) {
logits[i][j] = -1 * std::numeric_limits<float>::max(); // set this to a very small possibility
num_masked++;
} else {
unmasked_types.push_back(scon[i]->enc->rep->pretty_type(j));
}
}
}
std::set<std::string> s( unmasked_types.begin(), unmasked_types.end() );
unmasked_types.assign( s.begin(), s.end() );
for (auto strr : unmasked_types) {
std::cout << "NOT MASKED: " << strr << std::endl;
}
if (param->mask_top_k() > 0) {
std::mt19937 engine(time(NULL));
// optionally mask the top k tokens
bool can_mask = false;
std::vector<midi::TOKEN_TYPE> token_types_to_mask = {midi::TOKEN_NOTE_ONSET, midi::TOKEN_TIME_ABSOLUTE_POS, midi::TOKEN_NOTE_DURATION};
for (const auto &t : token_types_to_mask) {
if (masked_tts[i].count(t) > 0) {
can_mask = true;
break;
}
}
if ((can_mask) && (random_on_unit(&engine) < param->mask_top_k())) {
std::vector<int> V(mask.size());
std::iota(V.begin(),V.end(),0);
std::sort( V.begin(),V.end(), [&](int ii,int jj){ return (logits[i][ii] > logits[i][jj]).item<int64_t>(); });
for (int j=0; j<10; j++) {
if (j==0) {
logits[i][V[j]] = -1 * std::numeric_limits<float>::max();
num_masked++;
}
}
}
}
}
if (param->sampling_seed() != -1) {
torch::manual_seed(param->sampling_seed());
}
float temperature = param->temperature();
auto probs = (logits / temperature).softmax(1);
auto next_tokens = probs.multinomial(1);
inputs.clear();
inputs.push_back( next_tokens );
inputs.push_back( past_key_values );
// add next token to the sequences
for (int i=0; i<(int)seqs.size(); i++) {
if (!scon[i]->finished) {
int next_token = next_tokens[i][0].item<int64_t>();
data_structures::LOGGER(data_structures::to_str("SAMPLED :: ", scon[i]->enc->rep->pretty(next_token)));
seqs[i].push_back( next_token );
if (callbacks) {
if ((scon[i]->enc->rep->is_token_type(next_token, midi::TOKEN_BAR_END)) || (scon[i]->enc->rep->is_token_type(next_token, midi::TOKEN_FILL_IN_END))) {
callbacks->on_bar_end();
}
callbacks->on_prediction(logits_copy[i], next_token);
}
}
}
}
void make_state(std::vector<torch::jit::IValue> *state, int batch_size, midi::ModelMetadata *meta) {
data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, "make_state" );
for (int i=0; i<meta->num_layers(); i++) {
std::vector<torch::jit::IValue> tuple;
for (int j=0; j<2; j++) {
tuple.push_back( torch::zeros({batch_size, meta->num_heads(), 0, meta->num_hidden()}) );
}
state->push_back( torch::ivalue::Tuple::create(tuple) );
}
}
std::vector<midi::Piece> generate(midi::Status *status, midi::Piece *piece, midi::HyperParam *param, const std::unique_ptr<ModelMeta> &mm, CallbackManager *callbacks) {
data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_DEBUG, "generate");
data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, util_protobuf::protobuf_to_string(status));
param->set_temperature( std::max((double)param->temperature(), 1e-6) ); // CAN'T HAVE ZERO TEMPERATURE
std::vector<std::unique_ptr<SAMPLE_CONTROL>> scon;
for (int i=0; i<param->batch_size(); i++) {
scon.push_back( std::make_unique<SAMPLE_CONTROL>(piece, status, param, &mm->meta) );
}
for (auto &sc : scon) {
data_structures::LOGGER("REG GRAPH" );
sc->rg->graph.print_graphviz();
}
std::vector<int> prompt = scon[0]->prompt;
std::vector<torch::jit::IValue> inputs;
std::vector<std::vector<int>> seqs = std::vector<std::vector<int>>(param->batch_size(), prompt);
scon[0]->rep->show(prompt);
auto opts = torch::TensorOptions().dtype(torch::kInt64);
torch::Tensor x = torch::zeros({param->batch_size(), (int)prompt.size()}, opts);
for (int k=0; k<param->batch_size(); k++) {
for (int i=0; i<(int)prompt.size(); i++) {
x[k][i] = prompt[i];
}
}
inputs.push_back( x );
std::vector<torch::jit::IValue> state;
if ((param) && (mm->meta.new_state())) {
make_state(&state, param->batch_size(), &mm->meta);
}
inputs.push_back(torch::ivalue::Tuple::create(state));
bool terminated = false;
int num_steps = 0;
while (!scon[0]->finished) {
sample_inner(scon, seqs, &mm->model, inputs, param, callbacks);
num_steps++;
if ((param->max_steps() > 0) && (num_steps >= param->max_steps())) {
terminated = true;
break;
}
if ((callbacks) && (callbacks->is_cancelled())) {
terminated = true;
break;
}
}
scon[0]->enc->config->decode_final = status->decode_final();
scon[0]->rep->show(seqs[0]);
std::vector<midi::Piece> output(param->batch_size());
if (!terminated) {
scon[0]->enc->tokens_to_json_array(seqs, output);
scon[0]->finalize(&output[0]); // batch size should be 1 anyways
}
return output;
}
} |